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Data-driven criteria for quantum correlations
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2Institute of Physics (FZU), Czech Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic

(Received 4 August 2023; accepted 9 January 2024; published 5 February 2024)

We build a machine learning model to detect correlations in a three-qubit system using a neural network
trained in an unsupervised manner on randomly generated states. The network is forced to recognize separable
states, and correlated states are detected as anomalies. Quite surprisingly, we find that the proposed detector
performs much better at distinguishing a weaker form of quantum correlations, namely, the quantum discord,
than entanglement. In fact, it has a tendency to grossly overestimate the set of entangled states even at the
optimal threshold for entanglement detection, while it underestimates the set of discordant states to a much
lesser extent. In order to illustrate the nature of states classified as quantum correlated, we construct a diagram
containing various types of states—entangled, as well as separable, both discordant and nondiscordant. We find
that the near-zero value of the recognition loss reproduces the shape of the nondiscordant separable states with
high accuracy, especially considering the nontrivial shape of this set on the diagram. The network architecture
is designed carefully: it preserves separability, and its output is equivariant with respect to qubit permutations.
We show that the choice of architecture is important to get the highest detection accuracy, much better than for
a baseline model that just utilizes a partial trace operation.
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I. INTRODUCTION

Quantum correlations play a pivotal role in near-future
quantum technologies, from quantum cryptography [1,2], to
networks [3,4], to computation [5,6]. The source of their use-
fulness is that they allow for the state of one subsystem to
be influenced by operations and measurements on the other,
which yields effects that cannot be reproduced by classical
physics. A good example here is teleportation [7–10], which
allows for the transfer of an unknown quantum state between
distant locations by means of local operations and measure-
ments, and the transfer of classical information, due to a
maximally entangled state being shared by two parties.

In quantum information theory, there is a long-standing
question about quantum correlations in mixed states [11–13].
For pure states, any correlations between subsystems are
quantum in their nature (entanglement), and the set of sepa-
rable (not entangled) states is equivalent to the set of product
states. In the case of mixed states, the fact that a density matrix
cannot be written in product form does not guarantee the
existence of quantum correlations, since this formalism allows
for the description of classical (purely statistical) correlations,
i.e., ρ̂AB = 1/2(|00〉〈00| + |11〉〈11|), whereas a product state
contains no correlations whatsoever.

One definition of the set of states that contain no quantum
correlations, namely the set of mixed separable states, is given
by [14–16]

ρ̂
sep
AB =

∑
i

pi|ψi〉AA〈ψi| ⊗ |φi〉BB〈φi|, (1)

where pi are probabilities and the indices A and B label the
subsystems. It is relevant to note here that there is no limi-
tation on states |ψi〉A or |φi〉B, which do not have to form a

basis. By this definition, a bipartite state is separable if and
only if it can be created from a product state using only local
operations and classical communication. The quantification of
entanglement (for mixed states, entangled states are defined
as not separable) is classed as an NP-complete problem [17],
and it does not simplify even when a state only needs to be
qualified as separable or entangled.

A state with no quantum correlations can also be defined as
a state for which no information about one subsystem can be
learned by measurements performed on the other subsystem.
Such states are said to contain zero discord [18–20], and
are defined by Eq. (1) with the added constraints that the
states |ψi〉A must be part of an orthonormal basis, and the
same for states |φi〉B. Quantifying the amount of discord in
a given state is also NP-complete [21], but it is harder than
quantifying entanglement for small systems [22–24]. On the
other hand, simply qualifying a state as discordant or not is a
straightforward task [22,25]. The set of nondiscordant states
is a subset of separable states. Currently, entanglement is
the accepted, standard metric for quantum correlations, yet it
should be noted that discord has one important advantage over
entanglement, namely that it has a much stronger relationship
to measurable quantities [26], while the detection of entangle-
ment generally requires quantum tomography [27,28].

In the following, we would like to go beyond the typical
scheme of describing the correlations in quantum states using
analytical metrics and propose the study of quantum corre-
lations using machine learning (ML) models forcing them
to learn similarities between different classes of quantum
states. We use neural networks (NNs) which have proven
their usefulness in many applications, such as computer vision
or signal processing [29,30], but recently also in quantum
physics, e.g., in many-body theory [31–34], in entanglement
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modeling [35–40], or in state reconstruction [41]. However,
in our approach, we carefully design the model architecture to
be separability preserving and qubit permutations equivariant,
which is part of the general trend of building NN models that
respect symmetries of a given problem, for example, being
rotation and translation group equivariant [42–45].

We present results where the ML model is first trained to
distinguish between separable and entangled states (on both
mixed and pure states) and then tested on similar sets. These
sets (both in the training and testing phases), apart from entan-
gled states, contain different variants of separable states, with
special emphasis lain on discordant separable states. While
the ML model trained only on pure states can only distin-
guish between product and nonproduct mixed states, hence
signifying correlations, but not being able to discriminate
between classical, quantum-classical (discord), and quantum-
quantum (entanglement) correlations, quite surprisingly, we
find that the performance of the separator trained also on
mixed states is much better at signifying quantum discord
than entanglement. This corroborates the intuition that a type
of quantum correlations which are defined on the properties
of measurement outcomes, as opposed to correlations defined
on specifics of state preparation, should be more evident in
a given state, even though the ML model was not trained
directly on nondiscordant states (but on separable ones).

II. NEURAL NETWORK MODEL

Since the goal of using the neural network is not only to
classify the discordance or entanglement of states, but also to
produce a similarity measure, we propose to train the model
in the unsupervised anomaly detector scheme [46]. Anomaly
detection is a standard problem in ML where a model is
trained to reconstruct normal data and then fails when trying
to reconstruct abnormal data (anomaly). The reconstruction
error, i.e., the model “loss function,” measures the similarity
of a given unknown sample to the training data, and if it
is greater than some assumed threshold, then the sample is
treated as an anomaly. In our case, anomalies are states that
are quantum correlated. The model is trained to recognize
separable states of three qubits. We study three-qubit states
to have a nontrivial yet manageable Hilbert space, keeping
in mind that the proposed model construction can be easily
extended to larger qubit registers.

To build the model, we use convolutional NNs (with a
discrete convolution operation [47–49]) as they are commonly
applied to build robust representations of correlations on data
on regular grids such as matrices. First, we need to organize
the convolution layers, so that the resulting NN can separate
the input density matrix into single-qubit matrices. The con-
structed NN should preserve pure separable (product) states
by definition and also not change the separability of mixed
states. A closer look at the model scheme presented in Fig. 1
shows that the convolution layers are organized in a way that is
a generalization of the partial trace operation, in the sense that
the kernel simplified to the identity matrix would calculate the
partial trace over the remaining qubits. Such an architecture
implies qubit permutation equivariance, meaning that permu-
tation of qubits in the input matrix gives the same permutation

FIG. 1. The three-qubit neural network separator model. The
input density matrix is convolved separately with three convolution
layers, each with 4×4 kernels that work in parallel. The stride and
dilation parameters defining these convolution layers are arranged in
such a way that they operate on each qubit subspace separately (de-
tails can be found in the Appendix A). After the convolution layers,
shape-preserving fully connected layers are applied independently
for each qubit matrix.

of the reconstructed state and preserves separability of any
reconstructed state.

Additionally, to extend the model complexity we include
four fully connected (FC) layers with nonlinear activation
functions (multilayer perceptron) after the convolutional ones.
This extension has a physical justification that will become
clear later. Importantly, to preserve the separability property,
these layers are applied independently to each block that
represents the qubit matrix. Moreover, to allow the neural
network to generalize and reconstruct also separable mixed
states, more sets of convolutions, i.e., channels, have been
used, giving a separable density matrix that is a sum over
NK channels. Details can be found in the Appendix A. The
reconstructed density matrix is given by

ρ̂ABC = 1

N

NK∑
i=1

ρ̂Ai ⊗ ρ̂Bi ⊗ ρ̂Ci, (2)

where we calculate the sum of the Kronecker product of
output single-qubit matrices (ρ̂Ai, ρ̂Bi, ρ̂Ci) over different Nk

channels, numbered by i. Note that the reconstructed matrix
is separable, but, in general, it does not fulfill the additional
criteria which would make it a nondiscordant state from defi-
nition. Since a perfect decoupling into single-qubit matrices
is possible only for separable states, the minimal distance
between the original and reconstructed density matrices, ob-
tained by the training of the neural network, can be seen as a
measure of the separability of states.

Both the original and reconstructed density matrices have
to be included in the NN loss function, which describes how
different the reconstructed state is from the original state. In
quantum information theory, one of the natural choices for a
difference between density matrices is the Bures distance [50],
but numerical experiments showed much better efficiency for
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training our NN model with the well-established L1 norm:

L(ρABC ) = 1

d2

∑
i, j

∣∣ρ i j
ABC − ρ̂

i j
ABC

∣∣. (3)

Here ρ
i j
ABC and ρ̂

i j
ABC denote the elements of the original and

reconstructed density matrices labeled by the indices i and
j, and d2 is the number of matrix elements. Using this loss
function, we train the NN model so that the total reconstruc-
tion loss, summed over all training examples, is minimized.
Note that to train the network, which we will call a separa-
tor, we do not need the labeled data. Instead, we compare
inputs with outputs, which means that our training scheme
is fully unsupervised. These types of ML models are also
called autoencoders (we comment on this in more detail in
the Appendix A).

Importantly, by choice of the model architecture, the sepa-
rator network is suited to reconstruct separable states; hence,
for these states we expect the value of the loss function to be
close to zero. In contrast, for entangled states, the model is
not able to reconstruct the input, and the difference between
the two matrices will result in a significantly higher value
of the loss L. In order to distinguish between separable and
entangled states, we set the anomaly threshold τ in such a way
that if L(ρABC ) is greater than τ for a given state ρABC , then
this state is classified as entangled. Otherwise, it is marked as
separable.

III. DATA GENERATION

The most critical aspect of training an ML model is having
a well-balanced and diversified data set. The modern approach
in ML is to synthesize data with already known properties
(e.g., forming separate classes in case of classifier training).
To achieve this goal, we select different methods for gener-
ating random density matrices. The main idea is to generate
random states using the quantum circuits approach [38], but
in order to have a well-diversified data set, we also use a
technique based on sampling from the uniform Haar measure
[51] and an additional parametrized method designed by us
(generation details can be found in the Appendix E).

We construct a training set composed of 530 000 pure
and mixed separable states including a class of nondiscordant
states and a validation set of 50 000 is constructed in the same
way. Furthermore, we generate two test sets involving both
separable and entangled states. The first of those (Spure) is
constructed from 15 000 random pure separable states and
15 000 random pure entangled states. This data set is gen-
erated evenly using both the quantum circuit approach and
sampling from the Haar measure. The second test set (Smixed)
includes 65 000 mixed states, constructed from pure states
either by mixing different states with random probabilities or
by reducing a larger multiqubit space to the desired few-qubit
size via the partial trace.

To classify states as separable during the generation pro-
cess, we use the negativity [52,53], an entanglement measure
based on the PPT (positive partial transpose) criterion of en-
tanglement [54,55], which is one of the few measures that
can be found directly from the density matrix for systems
larger than two qubits. It is defined as the absolute sum of the

TABLE I. Average separator loss for different subsets in pure
Spure and mixed Spure test sets quantifying similarity between different
types of states and separable ones.

〈L〉 for different subsets

Test set Separable Nondiscordant Discordant Entangled

Spure 5.9×10−4 5.9×10−4 0.042 0.042
Smixed 5.2×10−3 1.0×10−3 0.017 0.021

negative eigenvalues of a bipartite density matrix after partial
transposition is performed on either of the subsystems. The
generation methods for mixed entangled states are specifically
adjusted not to produce bound entangled states [56], which
cannot be detected by negativity. To qualify discord, we use
the criterion of Ref. [25], which is very straightforward to
check, especially if one of the subsystems is small (relevant
details are given in the Appendix F). Incidentally, it is com-
mon that a state is discordant only with respect to one part of a
bipartition, so a state has to contain no discord with respect to
both subsystems to be classified as a nondiscordant state [20].
For both entanglement and discord, the lack of correlations
is checked three times: between qubit i and the rest of the
three-qubit system, with i = A, B,C.

IV. MODEL TRAINING AND RESULTS

In ML, a single pass through the entire training set, during
which we update model parameters (typically using the gra-
dient of a loss function in the parameter space), is called an
epoch. The separator model was trained for 20 epochs, in a
way that the model parameters for the epoch with the lowest
averaged reconstruction loss 〈L〉 on the validation set were
saved and used for evaluation (testing) purposes.

For the test set that contains only pure states, Spure, the
average loss 〈L〉 for separable states is equal to 5.9×10−4,
while in the case of entangled states, it is much larger, giving
〈L〉 = 0.042. Obviously, for the discord the numbers are the
same—see Table I. Choosing the threshold value τ to obtain
the highest possible accuracy [balanced accuracy (BA), de-
fined in the Appendix B] of the model predictions yields τ =
1.25×10−3 with the corresponding classification accuracy of
99.63% for the whole Spure set.

For the test set with mixed states, Smixed, in the case
of nondiscordant states, the average loss 〈L〉 is only about
1.5 times higher than for uncorrelated pure states, meaning
that the original and reconstructed states are the same to
an equivalent extent, while for mixed separable states it is
40 times higher, signaling that, on average, mixed separable
states differ significantly more from the reconstruction. The
same behavior, with mixed discordant states more similar to
pure separable than mixed separable, can also be observed
in supervised ML models—further details can be found in
the Appendix C. Moreover, discordant and entangled states
display roughly half 〈L〉 for mixed states compared to pure
correlated states, which is in agreement with the fact that
mixed states are on average less correlated than pure states.
Overall, the difference between zero and nonzero discord
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FIG. 2. (a) Separator performance for detecting discordant (blue dots) and entangled (red crosses) states, tested on Smixed. Left: Precision vs
recall curves. Right: Balanced accuracy, depending on the threshold τ value. For comparison, partial trace-based baseline model performance
is also presented by blue solid and red dashed curves, respectively. (b) Same as (a) but for the separator model with removed FC layers—cf.
Fig. 1. (c) Same as in (a) but for the separator trained on the nonproduct states only.

states (measured by reconstruction loss L) is over an order of
magnitude larger than between separable and entangled states.

Let us now test the separator performance using the mixed
test set, Smixed, and compare its practical usefulness for either
discord or entanglement detection. We performed two inde-
pendent tests. In the first, we took discord labels and tested
the ability to classify discord, and in the second, we took
separability labels for the same set Smixed and tested the ability
to classify entanglement. Since for mixed states a discordant
state can also be separable, one cannot simultaneously balance
nondiscordant vs discordant and separable vs entangled states
in a single mixed test set; therefore, we use BA (see the
Appendix B) as the model performance measure.

Figure 2 contains results of separator performance for de-
tecting discordant (green curves) and entangled (red) states
on the Smixed set. Figure 2(a), right, shows that the model has
much higher BA when detecting discord than entanglement in
a wide range of thresholds, reaching 93% for τ = 0.0023 in
case of discord detection, while for entanglement a maximum
of 82% is reached at τ = 0.0051. Moreover, when training
the model on the subspace of the original training domain
where the product states have been excluded, as presented
in Fig. 2(c), we clearly get better performance for discord
in terms of the larger area under the precision-recall curve
(left). Performance comparisons for training separately on
some other classes of states can be found in the Appendix A.

The convolution part in the separator performs an operation
that is a generalization of the partial trace. When removing
the FC layers that extend the convolution layers, we observe

that the model simply collapses to the partial trace baseline
(example kernels for both cases can be found in the Appen-
dices) and is analogous to what is obtained when training
only on pure separable states. Figure 2(b) contains results for
a separator with the FC layers removed: comparing accuracy
with a partial trace baseline (blue and orange curves) we get
practically the same accuracies.

We present the confusion matrices for the separator serving
as a separability vs. entanglement classifier in Table II and a
nondiscordance vs. discordance classifier in Table III. Overall,
the separator tends to grossly overestimate the set of entangled
states as seen in Table II, where for both thresholds presented
(τ = 0.0023 corresponding to the best discord classification
and τ = 0.0051 corresponding to the best entanglement clas-
sification) the number of separable states wrongly labeled as
entangled is of the same order of magnitude as the number
of correctly detected entangled states. The number of erro-
neously classified separable states is comparatively small. In

TABLE II. Confusion matrix for separable vs. entangled states
classification at τ = 0.0023 and 0.0051.

�����������Labels
Predictions

Separable Entangled

Separable τ = 0.0023 28340 15257
Entangled τ = 0.0023 305 21098
Separable τ = 0.0051 30696 12901
Entangled τ = 0.0051 942 20461
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TABLE III. Confusion matrix for nondiscordant vs. discordant
states classification at τ = 0.0023 and 0.0051.

���������Labels
Predictions

Nondiscordant Discordant

Nondiscordant τ = 0.0023 25114 1192
Discordant τ = 0.0023 3531 35163
Nondiscordant τ = 0.0051 25822 484
Discordant τ = 0.0051 5816 32878

contrast, the set of discordant states tends to be underesti-
mated, with a discordant state being more likely to be labeled
as not correlated than the other way around. This occurs to
a much lesser extent than the overestimation of entanglement
as seen in Table III. The results here are more balanced, with
erroneous classifications averaging at a number an order of
magnitude lower than the correct predictions.

V. CORRELATION MAP

In order to acquire a deeper understanding of how well the
sets of nondiscordant and separable states are reconstructed by
the ML classifier at different thresholds, we analyze a family
of three-qubit states which are easy to parametrize, and study
a two-dimensional (2D) diagram forming a map with regions
differing in the type of correlations present (or absent) as seen
in the inset of Fig. 3.

The family of states is constructed as follows. We take
a separable mixed state of the form ρ = pρ1 + (1 − p)ρ2,
where probability p is one of the parameters, and the den-
sity matrices ρ1 and ρ2 correspond to three-qubit pure states,
|�i〉 = ⊗

k |ψi〉, with k = A, B,C and

|ψ1〉 = a|0〉 +
√

1 − a2|1〉, (4a)

|ψ2〉 = e−i φ

2

√
1 − a2|0〉 − aei φ

2 |1〉, (4b)

FIG. 3. Reconstruction loss L for the already trained separator
model tested on the family of three-qubit states with their separability
and discordance conditions known and parametrized on a 2D map
(see inset for the map division into the classes and the Appendix D for
detailed parametrization of the classes).

respectively. Coefficient a and phase factor φ constitute two
other parameters that characterize the family of states. It
now contains only separable states. For p = 0, 1 the state is
pure (and consequently of product form), while it is mixed
nondiscordant for φ = 0 or a = 0, 1. To introduce entangle-
ment into the system we find the spectral decomposition of
ρ = ∑

i λi|ϕi〉〈ϕi| and increase the largest eigenvalue, λ0:

ρ →
∑

i �=0 λi|ϕi〉〈ϕi| + (λ0 + c)|ϕ0〉〈ϕ0|∑
i λi + c

, (5)

making c the final parameter which characterizes this family
of states.

This allows us to plot the loss function (3) for selected cross
sections of the Hilbert space and visualize how surfaces of
equal L compare to the sets of nondiscordant and separable
states. In Fig. 3 only the darkest regions in the inset are en-
tangled; all other regions are separable and are further divided
into product states, nondiscordant mixed states, and discor-
dant separable states. The respective regions are obtained by
careful choice of parameters p, a, φ, and c along the horizontal
and vertical axes.

The main plot in Fig. 3 shows the loss L on this parameter
space. The specifics of how the different parameters change
in each region are described in detail in the Appendix D.
It is noticeable that, while the partial trace-based model is
capable only of distinguishing between product and nonprod-
uct states (we show the plot and discuss this in detail in the
Appendix A), the neural network distinguishes all nondiscor-
dant states. The results presented in Fig. 3 are in agreement
with the general results of Fig. 2, and Tables II and III,
demonstrating why the discord detection results in false neg-
atives (overestimating the set of nondiscordant states), while
entanglement detection results in so many false positives.

VI. CONCLUSIONS

In conclusion, we designed and trained a neural network
to distinguish between separable and entangled states on a
set of mixed and pure states. For optimum threshold values,
the network performs with 82% balanced accuracy for mixed
states, as compared to over 99% classification accuracy of
the same network for pure state entanglement. To understand
this discrepancy outside of the trivial acknowledgment that
determining mixed state entanglement is a much more com-
plicated task than pure state entanglement, we have compared
the results obtained on the mixed test set with other classes
of uncorrelated states. We have found that the set of states
labeled as uncorrelated by the separator overlaps best with
the set of nondiscordant states. This is confirmed by the 93%
balanced accuracy of detecting such states, outperforming the
detection of both separable and product states. This result is
surprising, because it shows that, for two different ML models
(supervised and unsupervised), random mixed nondiscordant
states are much more similar to states from a random set
of pure separable states (as the lowest loss is observed for
such states) than random mixed separable states. We sup-
plement plots of ML metrics and confusion matrices with a
map of numerically detected quantum correlations for cross
sections of the three-qubit Hilbert space, which allows us to
understand the nature of the sets of states which are qualified
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FIG. 4. The separator autoencoder composed of the trainable
encoder neural network (gray triangle) and the analytical decoder
that simply calculates the Kronecker product.

as uncorrelated by ML. The surface where the loss is near
zero (no quantum correlations) reproduces the set of nondis-
cordant states extremely well, while the discordant separable
states are largely classified as quantum correlated, illustrating
why the separator grossly overestimates entanglement while
only marginally underestimating discordance. The network
architecture is designed carefully to preserve separability (i.e.,
it does not introduce any entanglement when reconstructing
the output) and its output is equivariant with respect to qubit
permutations. We observe that the simplified version of the
separator model, which realizes just generalization of a partial
trace operation, simply collapses to partial trace during the
training. However, when extending it to a neural model ca-
pable to learn other representations by adding fully connected
layers working separately within each qubit subspace, it learns
more complex patterns and improves its performance over a
partial trace baseline.
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APPENDIX A: DETAILS ON THE SEPARATOR
NEURAL NETWORK

In the following section, we analyze the structure of the
NN model trained to reconstruct separable states and detect
nonseparable states as an anomaly. Anomaly detection is a
standard problem in ML where a model is trained to recon-
struct normal data and then fails when trying to reconstruct
abnormal data (anomaly). The reconstruction error, i.e., the
model loss function, measures the similarity of a given un-
known sample to the training data, and if it is greater than
some assumed threshold, then the sample is treated as an
anomaly. It is easy to construct a many-qubit density matrix
as a product of single-qubit density matrices. However, the
opposite operation is much more complicated. Then, this task
can be seen as an inverse problem. Here, we propose to solve
it with the help of a modified autoencoder-type NN, schemat-
ically depicted in Fig. 4. The typical autoencoder is composed
of two connected networks: the encoder and the decoder.
Usually, the output of the encoder is narrower than its input, so
this part compresses the data. Next, the decoder decompresses
it, and both parts of the autoencoder are trained to have the
output as close as possible to the input. Our idea is to use
the encoder to transform three-qubit density matrices into

three single-qubit matrices in such a way that their product,
calculated by the decoder, is as close to the original density
matrix as possible. The autoencoder will be implemented as a
NN, with only the encoder part trainable. The decoder simply
calculates the Kronecker product of the single-qubit density
matrices, as described in Eq. (2).

The backbone of the encoder is composed of convolution
layers, which map the input density matrix into single-qubit
subspaces. They are followed by FC layers that extend the
model and introduce nonlinearity; however, they do not intro-
duce entanglement, since they are applied independently for
each of the reconstructed qubits.

Let us focus on a d = 3 qubit system ρABC , bearing in mind
that the proposed reconstruction can be easily extended to
larger qubit registers. We require a neural network model N ,
which we call a separator, to have the following properties:

N (ρA ⊗ ρB ⊗ ρC ) = c ρA ⊗ ρB ⊗ ρC, (A1)

N
(∑

i

pi ρAi ⊗ ρBi ⊗ ρCi

)
=

∑
i

p̂i ρ̂Ai ⊗ ρ̂Bi ⊗ ρ̂Ci, (A2)

with some multiplicative constant c. To do so one can adjust
the convolution layers Cs,l , with kernel K, step size (stride) s,
and dilation l:

Cs,l (ρ)i, j = (K ∗l ρ)si,s j =
∑
k,q

Kk,qρsi+l (k),s j+l (q), (A3)

where i, j = 0, 1, and k, q = 0, . . . , 2d−1 − 1, so that the ker-
nels overlap with the respective blocks of the density matrix
and therefore convolving them against the density matrix re-
sults with output matrices representing systems with a reduced
number of qubits. Dilation can be just a simple scaling of
the sum index: l (k) = l k, with rate l meaning that the kernel
only touches the signal at every lth entry, or more complex
indexing.

Specifically, choosing CA = C4,1 with kernel K of size 4×4
allows the neural network to learn the structure of repeating
blocks ρB ⊗ ρC and therefore to reduce the input density ma-
trix to

C4,1(ρA ⊗ ρB ⊗ ρC ) = c ρA,

with c being some multiplicative constant, as in Eq. (A1). To
extract the last one, we need CC = C1,2. To extract the second
qubit, more complex dilation is needed in CB. All kernels
are visualized in Fig. 1. The input density matrix, divided
into two channels (respectively for the real and imaginary
parts), is convolved separately with three convolution layers,
each with 4×4 kernels. The first one is set up using a stride
equal to 4, as a result producing a matrix corresponding to the
first qubit subspace. In the second convolution, the kernel is
divided into four blocks of size 2×2, separated with dilations
resulting in the second qubit subspace. The third convolu-
tion consists of the kernel dilated with extra space between
every weight, therefore extracting the information about the
last qubit. Finally, after applying all the convolutions, one
can combine them and construct the output separable density
matrix CA(ρABC ) ⊗ CB(ρABC ) ⊗ CC (ρABC ) = ρ̂A ⊗ ρ̂B ⊗ ρ̂C .

It is obvious that in this way the defined separator model
N fulfils Eq. (A1). However, to enable the neural network to
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generalize and reconstruct separable mixed states, i.e., obey
Eq. (A2), a larger number of (triples of) kernels is chosen (we
use NK = 24 kernels in each type of convolution layer). To
simplify the implementation and keep neural network values
real, we doubled the number of kernels, that is, 2NK , so half
of the channels processed the real and the other half processed
the imaginary part of the density matrix. At this point, we
also add four FC layers for each qubit (A, B,C) separately to
extend the complexity of the model. Subsequently, we calcu-
late the sum of the Kronecker product of output single-qubit
matrices (ρ̂Ai, ρ̂Bi, ρ̂Ci) over different kernels numbered by i
and arrive at the reconstructed density matrix as in Eq. (2).

Both the original and reconstructed density matrices are
included in the loss function of the neural network defined in
Eq. (3). Using this loss function, we train the separator model
so that the total reconstruction loss, summed over all training
examples, is minimized. Note that to train the network, we
do not need the data to be labeled. Instead, we simply com-
pare inputs with outputs, and therefore, our model scheme is
fully unsupervised. The trainable weights of the kernels are
adjusted using the procedure called gradient descent, where
the gradients of the loss are calculated with respect to the
weights. Subsequently, all parameters of the model, e.g., each
kernel weight Ki j , are updated as follows:

Ki j
new = Ki j

old − α
∂L

∂Ki j
old

, (A4)

where α is the learning rate. We proceed similarly for weights
in FC layers. This procedure is repeated until the reconstruc-
tion loss [Eq. (3)] reaches (we hope) the global minimum,
which means that the model is already trained. Importantly,
by the choice of the model architecture, the separator network
is suited to reconstruct separable states, and for these states,
we expect the value of the loss function to be close to zero.
In contrast, in the case of an entangled state, the model will
not be able to reconstruct the input, and the output density
matrix should differ from the input one, resulting in a sig-
nificantly higher value of the loss. Therefore, to distinguish
between separable and entangled states, we set the anomaly
threshold τ in such a way that if L(ρABC ) is larger than τ for
a given state ρABC , then this state is classified as entangled
and, otherwise, it is marked as separable. Interestingly, in
addition to classification purposes, the loss value L(ρABC ) can
also be interpreted as a similarity measure between the states
used in the training dataset and given tested state ρABC . In
Fig. 5 we present the extended results for the separator model
with and without four FC layers trained on different subsets
of the original training set. As before, the neural network is
evaluated on the Smixed set. We start to train the model in
the simplest possible scenario where the dataset consists of
190 000 pure separable states. The model trained on such a
dataset collapses to the baseline trace model. It is expected
behavior since in this case the baseline model is a sufficient
criterion for distinguishing between entangled and separable
states. The same situation occurs when we extend our training
set to the wider set of product states by adding 120 000
mixed product states. Interestingly, in this case, the neural
network reflects partial trace operation even more precisely,
which is revealed by a wider range of thresholds producing

FIG. 5. Same as in Fig. 2, but for the separator trained only on
some part of the original training set: (a) pure separable states, (b),
(c) product states, (d), (e) nondiscordant states, (f), (g) separable
states, and (h), (i) nonproduct separable states. Results are shown
for the (standard) separator with four fully connected layers after
convolutional ones (c), (e), (g), (i) and without it, containing only
convolutional layers (a), (b), (d), (f), (h).

overlapping accuracy. Including FC layers, and thus intro-
ducing the nonlinearity, slightly limits this phenomenon;
however, since the baseline model is still a precise criterion
of separability in the case of product states, hence the neu-
ral network is not penalized for not learning more complex
operations. The situation changes when we append 100 000
nonproduct nondiscordant states. Now, the baseline is no
longer reliable and the network needs to learn extra features
in order to correctly separate and reconstruct such states.
Notably, the separator model is capable of achieving this task
only when extra FC layers are present. Otherwise, it collapses
to the baseline. This situation reoccurs for the full training
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FIG. 6. Example weights of 4×4 convolutional kernels for the
already trained three-qubit separator model. The kernels reconstruct
(a) real and (b) imaginary parts of the first qubit (weights for two
other qubits are similar) for the plain separator model, with just
convolutional layers. Similarly, (c) and (d) show real and imaginary
parts of kernels for the separator with additional fully connected
layers.

set consisting of 530 000 separable states. For the sake of
completeness, we additionally test our model after training it
on the reduced domain of nonproduct separable states. The
data set in this case is constructed separately from 360 000
states, which are generated with the same methodology as for
the original training set. The main difference of the model
trained on such a subdomain is that even without any FC
layers it does not collapse to a partial trace operation, which
may suggest that using only nonproduct separable states for
training can also be beneficial for the model with FC layers. In
Fig. 6 we present exemplary kernels learned for the separator
model with (right) and without FC layers (left) trained on
the full data set (as in the main text). The model with only
convolutional layers collapses to a partial trace baseline which
manifests itself in the fact that its kernels resemble identity
matrices (the partial trace is equivalent to the convolutional
kernel being equal to the identity matrix).

In Fig. 7 we also present a reconstruction loss map anal-
ogous to the map in Fig. 3 in the main text, but obtained
using a partial trace as a baseline replacement for the separator
model. On this map, only product states are clearly detected
as not containing correlations, as is to be expected; however,
the region in the lower right square of the map, which rep-
resents some space of mixed zero-discord states, is signified
as containing fewer correlations. Note that the other region of
similar type (in the center of the plot) is not correspondingly
distinguished.

APPENDIX B: CLASSIFICATION METRICS

In machine learning to evaluate classification or detection
results, we typically use various types of metrics that measure
model performance.

FIG. 7. Reconstruction loss L for the partial trace-based model
tested on a family of three-qubit states with their separability and dis-
cordance conditions parametrized on a 2D map (see inset for the map
division into the classes and Appendix D for detailed parametrization
of the classes).

The standard metrics [57] used in binary classification, also
to tune the model hyperparameters, e.g., classification thresh-
old τ , are precision PR = TP

TP+FP and recall RC = TP
TP+FN . Here

TP, TN, FP, and FN denote respectively the number of true
and false positives and negatives; by “negatives” we mean
nondiscordant (or separable), while by “positives” we mean
discordant (or entangled) states.

The procedure called “precision-recall tradeoff” involves
choosing a threshold that maximizes the area under the
precision-recall curve. However, due to the fact that our
dataset is imbalanced (we cannot have balanced separable or
entangled and nondiscordant or discordant classes at the same
time), we use a metric typically defined for imbalanced data
sets. Balanced accuracy is defined as the average of recall
obtained on each class [58]: BA = 1

2 ( TP
TP+FN + TN

TN+FP ).

APPENDIX C: SIMILARITY BETWEEN STATES

In order to verify whether the statement from the main text,
that the mixed nondiscordant states are much more similar to
states from a set of pure separable states (as the lowest loss
is observed for such states in Table I) than mixed separable
states, also holds for other machine learning models, we tested
two different models, as introduced in Ref. [38]. Both of them,
CNN and Siamese CNN, were trained in a supervised manner
to classify if a given three-qubit state is entangled [38]. In
Table IV there are presented average output probabilities for
different classes of states in the test set for both models. We
can clearly observe that the outputs show the same similarities
between states as for the unsupervised model, used in the main
text.

APPENDIX D: PARAMETER VARIATIONS
ON A THREE-QUBIT MAP

The family of states in the map in Fig. 3 is constructed
as follows. We take a separable mixed state of the form
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TABLE IV. Average output probability p for CNN (top) and
Siamese CNN (bottom) models trained to predict if a given state is
entangled.

〈p〉 for CNN model

Test set Separable Nondiscordant Discordant Entangled

Spure 0.104 0.104 0.968 0.968
Smixed 0.221 0.115 0.686 0.887

〈p〉 for Siamese CNN model

Test set Separable Nondiscordant Discordant Entangled

Spure 0.027 0.027 0.969 0.969
Smixed 0.105 0.038 0.570 0.824

ρ = pρ1 + (1 − p)ρ2, where probability p is one of the pa-
rameters, and the density matrices ρ1 and ρ2 correspond to
three-qubit pure states, |�i〉 = ⊗

k |ψi〉, with k = A, B,C and

|ψ1〉 = a|0〉 +
√

1 − a2|1〉, (D1a)

|ψ2〉 = e−i φ

2

√
1 − a2|0〉 − aei φ

2 |1〉, (D1b)

respectively. Coefficient a and phase factor φ constitute two
other parameters that characterize the family of states. It
now contains only separable states. For p = 0, 1 the state is
pure (and consequently of product form), while it is mixed
nondiscordant for φ = 0 or a = 0, 1. To introduce entangle-
ment into the system we find the spectral decomposition of
ρ = ∑

i λi|ϕi〉〈ϕi| and increase the largest eigenvalue, λ0:

ρ →
∑

i �=0 λi|ϕi〉〈ϕi| + (λ0 + c)|ϕ0〉〈ϕ0|∑
i λi + c

, (D2)

making c the final parameter which characterizes this family
of states.

Now we detail how the specific parameters are changed
in the different regions of the map to generate states corre-
sponding to different classes in terms of quantum and classical
correlations. Specifically, we start from point A, where the
parameter a = 1/

√
2 takes the maximal value, while all others

are set to minimal values: p = 0, φ = 0, and c = 0. Moving
along the axis AB we increase the parameter p so that it
takes the maximal value 1/2 in point B. Similarly, coefficient
a is decreased along the axis BC, so that in point C it is
equal to zero. Moving outside the square region ABCD we fix
parameters a and p to the boundary values and start increasing
the parameters φ and c. The phase φ grows linearly along
both horizontal and vertical axes in such a way that inside the
square ABCD it is equal to zero and it is equal to π/2 at the
edges of the map. The parameter c is increased along the coun-
terdiagonal in the top right square, taking the minimal value
zero in point B and maximal value 1 in the top right corner of
the map. The parametrization is performed symmetrically on
both sides of the diagonal of the map. Therefore, the axis AB
in the upper right triangle corresponds to the axis AD in the
lower left triangle. Similarly, BC is reflected to DC. Keeping
that in mind, we note that parameter c is additionally increased
by �c in the lower left triangle. This extra term grows linearly
along the counterdiagonal from �c = 0 in the center of square
ABCD to �c = 1 in the bottom left corner of the map.

APPENDIX E: PARAMETRIZED METHOD OF
GENERATING THREE-QUBIT DENSITY MATRICES

The most critical aspect of training an ML model is having
a well-balanced and diversified data set. The modern approach
in ML is to synthesize data with already known properties
(e.g., forming separate classes in case of classifier training).
To achieve this goal, we select different methods for gener-
ating random density matrices. The main idea is to generate
random states using the quantum circuits approach [38], but
in order to have a well-diversified data set, we also use a
technique based on sampling from the uniform Haar measure
[51].

We construct a training set composed of 530 000 pure
and mixed separable states including a class of nondiscordant
states and a validation set of 50 000 is constructed in the same
way. Furthermore, we generate two test sets involving both
separable and entangled states. The first of those (Spure) is
constructed from 15 000 random pure separable states and
15 000 random pure entangled states. This data set is gen-
erated evenly using both the quantum circuit approach and
sampling from the Haar measure. The second test set (Smixed)
includes 65 000 mixed states, constructed from pure states
either by mixing different states with random probabilities or
by reducing a larger multiqubit space to the desired few-qubit
size via the partial trace.

Now we describe the original parametrized method used
to generate random mixed states when building the training
set. To generate such states, we also used the quantum circuits
approach and a technique based on sampling from the uniform
Haar measure—both are described in Ref. [38].

Let us start by defining a three-qubit pure separable state:

|ψsep〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉
= (a1|0〉 + b1|1〉) ⊗ (a2|0〉 + b2|1〉) ⊗ (a3|0〉 + b3|1〉)

= a1a2a3|000〉 + a1a2b3|001〉 + a1a3b2|010〉
+ a1b2b3|011〉 + a2a3b1|100〉 + a2b1b3|101〉
+ a3b1b2|110〉 + b1b2b3|111〉, (E1)

where the complex coefficients of each state fulfill

|ai|2 + |bi|2 = 1. (E2)

We then introduce entanglement into the system for each pair
of qubits via phases φi j :

|ψent〉 = a1a2a3|000〉 + a1a2b3|001〉 + a1a3b2|010〉
+ a1b2b3eiφ23 |011〉 + a2a3b1|100〉
+ a2b1b3eiφ13 |101〉 + a3b1b2eiφ12 |110〉
+ b1b2b3ei(φ12+φ13+φ23 )|111〉. (E3)

Finally, the decoherence coefficients ci are included for each
qubit separately in order to obtain mixed states, mimicking the
operation of single-qubit dephasing channels:

ρi = |ψi〉〈ψi| =
(

|ai|2 aib∗
i

a∗
i bi |bi|2

)
(E4)

decoherence−−−−−−→
(

|ai|2 ciaib∗
i

c∗
i a∗

i bi |bi|2
)

= ρ̃i. (E5)
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Combining all of the above, one arrives at the following:

ρ = |ψent〉〈ψent| decoherence−−−−−−→ ρ̃, (E6)

where the density matrix ρ̃ is parametrized with independent
coefficients ai and ci as well as phases φi j . In order to obtain
a diversified set of states, we propose to choose these param-
eters uniformly at random over the interval [0, 1] for ai and
ci, and over the interval [0, 2π ] for phases φi. Moreover, we
randomize the states by evolving them with local single-qubit
gates:

U (θ, φ, λ) =
(

cos θ
2 −eiλ sin θ

2

eiφ sin θ
2 ei(φ+λ) cos θ

2

)
, (E7)

where θ , φ, and λ are some arbitrary Euler angles. Hence,
sampling the angles randomly over the interval [0, 2π ], in-
dependently for separate qubits, one can write the final
randomized density matrix as

ρ̃rand = (U1 ⊗ U2 ⊗ U3)ρ̃(U1 ⊗ U2 ⊗ U3)†. (E8)

APPENDIX F: CLASSIFYING STATES
AS NONDISCORDANT

To classify a state as discordant or not, we use an if-
and-only-if criterion for nondiscordant states from Ref. [25].
The criterion states that a bipartite state with subsystems of
arbitrary dimensions N and M has zero quantum discord with
respect to the system of dimension M, if and only if all blocks
of the (NM )×(NM ) density matrix, which are obtained by
partitioning the density matrix into N2 square matrices of
dimension M, are normal matrices and commute with each
other.

The required partition is performed starting from the den-
sity matrix written in the form

σ̂ =
∑

kq

∑
nm

Pnm
kq |k〉〈q| ⊗ |n〉〈m|, (F1)

where the indices and corresponding states k and q corre-
spond to the system of dimension N , while the indices and
states n and m correspond to the subsystem of dimension M.
The partition into blocks requires leaving only the elements
which correspond to matrix elements |k〉〈q| in the subspace of
the system of dimension N :

σ̂kq = 〈k|σ̂ |q〉. (F2)

Each choice of k and q yields a different matrix.
A normal matrix is one that commutes with its Hermitian

conjugate (the matrix obtained through the partition does not
need to be a density matrix), thus fulfilling

[σ̂kq, σ̂
†
kq] = 0, (F3)

whereas commutation obviously requires that for all k and q
and for all k′ and q′ one has

[σ̂kq, σ̂k′q′] = 0. (F4)

Both criteria are fulfilled, if and only if the state has zero
discord with respect to the subsystem of dimension M.

It is relevant to keep in mind that a zero discord state
must not have any correlations of this type with respect to
the subsystems of both size M and size N , so in the case of
our three-qubit system and each of the three-qubit–two-qubit
partitions we will require two checks for zero discord, one
with respect to the qubit and the other with respect to the
two-qubit subsystem. In total, this means that checking for the
presence of discord in a given three-qubit state is performed
six times due to the different partitions and the asymmetry of
the discord.

APPENDIX G: NUMERICAL METHODS

Data generation is performed with the usage of the QISKIT

[59] library. All data sets can be generated in ≈8 h. The neural
network model (encoder and decoder part) is implemented
using the PYTORCH [60] library with an automatic differenti-
ation engine (autograd) used to track gradients of the model
parameters. The training of the single model on the GPU
Nvidia RTX 3070 takes ≈1 day.
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[22] B. Dakić, V. Vedral, and Č. Brukner, Necessary and sufficient
condition for nonzero quantum discord, Phys. Rev. Lett. 105,
190502 (2010).

[23] A. Miranowicz, P. Horodecki, R. W. Chhajlany, J. Tuziemski,
and J. Sperling, Analytical progress on symmetric geometric
discord: Measurement-based upper bounds, Phys. Rev. A 86,
042123 (2012).

[24] T. Tufarelli, T. MacLean, D. Girolami, R. Vasile, and G. Adesso,
The geometric approach to quantum correlations: Computabil-
ity versus reliability, J. Phys. A 46, 275308 (2013).

[25] J.-H. Huang, L. Wang, and S.-Y. Zhu, A new criterion for zero
quantum discord, New J. Phys. 13, 063045 (2011).
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