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Temperature-driven BCS-BEC crossover and Cooper-paired metallic phase in coupled
boson-fermion systems
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Motivated by strongly correlated and frustrated systems, we propose an effective model that describes the
dynamics of pairs of opposite spin fermions scattering from localized bosons. Integrating out one of the degrees,
either the bosons or fermions, generates temperature-dependent long-range effective interactions between the
entities that we investigate using Monte Carlo techniques. The behavior of bosons is dominated by vortex-
antivortex unbinding, with effective interboson interactions beyond the nearest-neighbor Josephson coupling of
phases. Remarkably, in the fermion sector we observe a temperature-driven phase transition from a SC phase
with a “BCS” spectral function that shows a gap minimum on the underlying Fermi surface to a conducting
phase of pairs but with a “BEC” spectral function with a gap minimum at k = 0. Tunneling and angle-resolved
photoemission spectroscopy on Bose-Fermi mixtures in cold atomic systems and superconducting islands on
graphene are some of the promising experimental platforms to test our predictions.
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I. INTRODUCTION

Strongly interacting systems lead to emergent phases with
spontaneously broken symmetries, such as magnets with bro-
ken time-reversal symmetry and superconductors with broken
gauge symmetry. Even within the superconducting phase, the
system can show effects of interactions evolving from a BCS
regime with large Cooper pairs compared to interparticle spac-
ing to a strongly coupled regime where the Cooper pairs are
tightly bound [1]. Such an evolution of a system from a BCS
to a BEC regime has been predicted as a function of increasing
pairing interaction and observed in experiments [2–4]. In this
paper, we discover a phase transition at Tc from the SC state in
which the single-particle spectrum has a “BCS” character with
a minimum gap contour on the underlying Fermi surface, to a
high-temperature state where phase fluctuations destroy long-
range phase coherence but not pairing and yields a spectral
function of “BEC” character with a gap minimum at k = 0.
Furthermore, the pairs are conducting, yielding a metallic
state of pairs, dubbed the Cooper pair metal. In this prediction,
a Cooper pair metal originates from an explicit calculation of
a model.

Another important feature captured by our model is that
even in weak coupling when the spectral gap is “BCS”-like,
with increasing temperatures the gap does not close at Tc as
expected within BCS theory; instead the gap fills up. Such
behavior has been observed in experiments on strongly corre-
lated superconductors. We can now identify the origin of such
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behavior as arising when phase fluctuations are the route to
destruction of superconductivity. The model we consider has
noninteracting spin-full fermions that interact with localized
bosons. The only interactions are local and occur between
two fermions of opposite spin and a boson, illustrated in
Fig. 1.

The original motivation for the model comes from rec-
ognizing that strongly interacting systems, such as fractional
quantum Hall effect, frustrated magnets, and high-Tc super-
conductors, can be described in terms of emergent degrees
of freedom that interact via fluctuating gauge fields. In
high-temperature superconductors, for example, strong on-
site Mott interactions generate effectively a two-component
system in which the fermionic holes become superconduct-
ing in a matrix of bosonic fluctuations of the spin singlets.
While many issues are still hotly debated, such as the role
of intertwined order [5], it is nevertheless remarkable that
the broad phenomenology can be understood in terms of a
two-component response with the hole density determining
the superconducting transition temperature Tc, and the spin
singlets generating the pseudogap scale T ∗ below which a
soft gap opens up in the density of states [6]. The effective
approach that we discuss below is an attempt to capture
the dynamics of such emergent two-component systems in
strongly interacting systems.

Another broad class of problems that the model we study
pertains to is the superconductor-insulator transition in dis-
ordered films, where the possibility of an intervening Bose
metallic phase is hotly debated. Our results show that a Bose
metal phase at finite temperatures can arise due to classical
phase fluctuations. It is possible that a continuation of such
phase fluctuations to zero temperature that are quantum in
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MACIEJ M. MAŚKA AND NANDINI TRIVEDI PHYSICAL REVIEW B 102, 144506 (2020)

(a) (b) (c)

FIG. 1. (a) Illustration of the phase-fermion model: mobile spin-up and spin-down fermions (blue arrows) hop between lattice sites and
scatter off localized classical phases (red arrows). (b) Effective phase-mediated interaction between fermions. This process leads to long-range
temperature-dependent interactions between the classical phases, and it modifies the spectral properties of the fermions. (c) Phase diagram
in the temperature T -coupling g plane: Based on the behavior of phase stiffness ϒ , superfluid density ρs of fermions, conductivity σdc, the
inverse participation ratio (IPR), and the fermion spectral gap Eg, we identify the following regions: (i) SF+PC (SuperFluidity with Phase
Coherence) in which ρs �= 0 and ϒ �= 0, implying both fermions and phases are coherent. (ii) Fermi metal (FM+PI, Fermi Metal with Phase
Incoherence) in which Eg = 0, σdc(T = 0) �= 0 and decreasing with temperature, implying that conduction is by single fermions, and the
phases are incoherent. In the region to the left of the black dashed line, the IPR indicates extended single-particle wave functions, whereas
on the right the single-particle states are weakly localized by the fluctuating phases, though the two-particle states probed by σdc indicate
metallic conduction. (iii) Cooper Pair Metal (CPM+PI) in which Eg �= 0, so the fermions are gapped out, but σdc(T = 0) �= 0 and decreasing
with temperature implying that the conduction is by fermion pairs; the phases are incoherent and disordered. The red line indicates a phase
transition from the phase coherent PC to the PI phase determined from the Kosterlitz renormalization-group equations. Letters A©, B©, C©, and
D© mark regimes for which fermionic spectral functions are presented in Fig. 5. The blue line marks the boundary where Eg = 0.

nature could drive a Bose metallic phase down to the lowest
temperatures.

II. MODEL

We investigate the spectral properties of a model of
fermions coupled locally to fluctuating phases, given by the
phase-fermion (PF) Hamiltonian:

HPF = −t
∑
〈i j〉,σ

ĉ†
iσ ĉ jσ + g

∑
i

(eiθi ĉi↑ĉi↓ + H.c.) − μ
∑

iσ

n̂ f ,

(1)
where c†

iσ (ciσ ) are fermion creation (annihilation) operators,
θi are classical phases at site i, t is the hopping amplitude
of fermions, g is the coupling strength between fermions and
phases, and μ controls the number of fermions.

Such an effective model can be obtained from a more
microscopic Bose-fermion model in which pairs of itinerant
fermions with opposite spin can be converted into localized
bosons and vice versa, given by

HBF = −t
∑
〈i j〉,σ

ĉ†
iσ ĉ jσ + g̃

∑
i

(b̂†
i ĉi↑ĉi↓ + H.c.)

−μ(2n̂b + n̂ f ) + EBn̂b, (2)

where n̂ f (n̂b) is the density operator for fermions (bosons),
μ is the chemical potential that controls the total number of
entities, and EB is the bosonic level. In the limit of a large
number of bosons per lattice site, the boson number fluctu-

ations can be neglected and b̂i →
√

nb
i eiθi , where nb

i and θi

are now classical site-dependent variables. Further, when (i)

EB = 2μ, so that the effective chemical potential for bosons
is zero, and (ii) g ≡ g̃

√
nb, where the amplitude of the boson

field is uniform, we obtain the PF effective Hamiltonian (1).
We will discuss later realistic systems for which the PF model
is a good description.

It is important to note that the PF model does not in-
clude a direct interaction between phases θi. However, through
the interaction with mobile fermions, effective phase-phase
interactions get generated. Correspondingly, the properties
of the fermions are also affected by their coupling to the
phases. Since the local θi variables are strongly temperature-
dependent, the scattering of fermions off fluctuating phases
leads to nontrivial spectral and transport properties of the
fermions, most strikingly a temperature-induced BCS-BEC
crossover. Figure 1 summarizes the phases that result in the
temperature-coupling plane from solving the Hamiltonian in
Eq. (1).

III. PHASE SECTOR: EFFECTIVE CLASSICAL
HAMILTONIAN

To perform a numerical study of the model in Eq. (1), we
integrate out the fermionic degrees of freedom for a given
configuration of phases �θ ≡ (θ1, . . . , θN ), and we obtain an
effective action of interacting phases [7]

H(�θ ) = − 1

β

∑
n

ln
[
1 + e−βEn (�θ )

]
, (3)

where En(�θ ) are its single-particle eigenvalues for a given set
of θ ’s and β = 1/kBT . We address the following questions
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(b)

FIG. 2. Phase-phase interaction potential for a two-site PF model
given by Eq. (8) for g = 1 (a) and g = 4 (b). The potentials have been
shifted so that V (0) = 0. The inset in panel (a) illustrates a two-site
PF model: the thick blue line represents fermions coupled to phases
θ1 and θ2.

about the PF model in the bosonic sector: (i) What are the
effective interactions between the phase degrees of freedom
generated by integrating out the fermions? (ii) Is there a phase
transition from a low-temperature phase-ordered state to a
high-temperature phase-disordered state? (iii) Is the transition
described by vortex-antivortex unbinding? (iv) How do the
phases and phase transitions in the PF model differ from those
in the XY model with nearest-neighbor interactions and the
associated Berezinskii-Kosterlitz-Thouless (BKT) transition?

A. Insights from a two-site model

The PF model can be analytically solved for a system
composed of two sites for which the Hamiltonian is given by

[see the inset in Fig. 2(a)]

H2-sites
PF (θ1, θ2) = − t

∑
σ

(c†
1σ c2σ + c†

2σ c1σ )

−μ
∑

σ

(c†
1σ c1σ + c†

2σ c2σ )

+ g(eiθ1 c1↑c1↓ + eiθ2 c2↑c2↓ + H.c.) (4)

with eigenenergies

E1,3 = ±
√

t2 + g2 + μ2 − 2 t �(�θ ), (5)

E2,4 = ±
√

t2 + g2 + μ2 + 2 t �(�θ ), (6)

where �θ ≡ θ1 − θ2 and �(�θ ) =
√

sin2(�θ/2) g2 + μ2.
The partition function

Z =
∫

dθ2

∫
dθ2Tre−βH (θ1,θ2 ) = 2π

∫
d�θeβV (�θ,β ). (7)

The effective temperature-dependent interaction between
phases θ1 and θ2 is given by

V (�θ, β ) = − 1

β

4∑
i=1

ln
[
1 + e−βEi (�θ )

]
(8)

and equals the free energy of the fermionic subsystem. The
dependence of the potential on �θ for g = 1 and 4 and at low
and high temperatures is depicted in Fig. 2. The limits of the
angle-dependent part of V are given by

V (�θ, β ) →
{

A(T )�θ2 for T → 0,

A(T ) cos(�θ ) for T → ∞,
(9)

where �θ is taken modulo 2π . The parameter A(T ) → 0 for
T → ∞ indicating that the interaction strength decreases with
temperature. The difference is pronounced even at small �θ ,
where in the low-temperature limit the angle-dependent part
of V ∝ cos(�θ/2) in contrast to V ∝ cos �θ at high temper-
ature. For stronger coupling the difference is much smaller,
and for g = 4 [Fig. 2(b)] the angle dependence is very well
described by cos(�θ ) at arbitrary temperatures. It can be
seen in Fig. 2 that the magnitude of the interaction strongly
decreases as the temperature increases.

(a) (b)

FIG. 3. (a) The temperature dependence of the phase stiffness ϒ for g = 4 for different system sizes. ϒ for the 36 × 36 system is obtained
by using the traveling cluster approximation (TCA) [9]. The straight blue line is the BKT result ϒ = 2

π
T for locating the transition. The inset

shows ϒ for a 16 × 16 system when only fermions are affected by temperature (see text). (b) The temperature dependence of the left-hand
side of Eq. (21) [AL (T )] for different system sizes. The inset shows the root-mean-square error for fitting Eq. (20) to the MC results.
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MACIEJ M. MAŚKA AND NANDINI TRIVEDI PHYSICAL REVIEW B 102, 144506 (2020)

We can next calculate the number of fermions from the
derivative of the thermodynamic potential with respect to μ,
which gives

N =
2∑

i=1

(
1 + ∂Ei

∂μ
tanh

βEi

2

)
. (10)

At low temperatures where the phase fluctuations can be ne-
glected, (�θ = 0), we obtain the standard BCS form

N =
2∑

i=1

⎛
⎝1 − ξi√

ξ 2
i + g2

tanh
β

√
ξ 2

i + g2

2

⎞
⎠, (11)

with ξ1 = −t − μ, ξ2 = t − μ. For μ = 0, we obtain on av-
erage one fermion per lattice site n f = 1. The same holds true
also at finite temperatures, where the derivatives in Eq. (10)
given by

∂E1,3

∂μ
= ± μ[t + �(�θ )]

�(�θ )
√

t2 + μ2 + g2 + 2 t �(�θ )
, (12)

∂E2,4

∂μ
= ± μ[−t + �(�θ )]

�(�θ )
√

t2 + μ2 + g2 − 2 t �(�θ )
, (13)

vanish for μ = 0 and �θ �= 0. Similarly, μ = 0 gives n f = 1
also for the two-dimensional square lattice if the phases θi are
fully ordered, i.e., θi = θ for all lattice sites i. In this case, the
system is described by the standard BCS Hamiltonian, and a
two-dimensional version of Eq. (11) is valid.

B. Helicity modulus or phase stiffness

The helicity modulus or the phase stiffness ϒ can be deter-
mined by calculating the free-energy change upon applying a
twist to the phases [8], given by

ϒ = d2F (φ)

dφ2
≈ F (−φ) − 2F (0) + F (φ)

φ2

= 2
F (φ) − F (0)

φ2
. (14)

In the MC simulations we fix θi = 0 at the left edge of the
system and θi = φ at the right one. Usually φ = π is used in
Eq. (14) and the limit L → ∞ is taken. Using this approach,
the phase stiffness is expressed by the difference between
the free energy for systems with periodic and antiperiodic
boundary conditions in the thermodynamic limit [8].

However, since it is much more difficult to get the free
energy, we instead transform the phase stiffness expression
in terms of the internal energy, according to

1

2

d

dβ
[βϒ(β )] = 1

φ2
[〈Ē (φ)〉β − 〈Ē (0)〉β], (15)

where

〈Ē (φ)〉β ≡ 1

Z

∑
{θi}

Ē (�θ, φ)e−βE (�θ,φ) (16)

is determined with the help of the METROPOLIS algorithm, and

Ē
(�θ, φ

) ≡
∑

n

[εn(�θ, φ) − μ] f [εn(�θ, φ) − μ] (17)

is the expectation energy of fermions for a given phase con-
figuration �θ and twist angle φ [ f (· · · ) is the Fermi-Dirac
distribution function]. Then, the phase stiffness ϒ can be
calculated as

ϒ(β ) = 2

βφ2

∫ β

0
[〈Ē (φ)〉β ′ − 〈Ē (0)〉β ′]dβ ′. (18)

Figure 3(a) shows that with increasing system size, ϒ be-
comes steeper, though the systems are still too small to expect
any signature of the universal jump in the stiffness at the
BKT transition. Another difference between the temperature
dependence of the stiffness in the XY and PF models is that in
the former case it converges very quickly at low temperature,
so that the results even for very small systems are almost the
same as in the thermodynamic limit [10]. On the other hand,
for the PF model, the convergence is still rather poor at low
temperatures and can be attributed to the fact that in the almost
ordered state, fermions are itinerant and travel through the
entire system so their properties are affected by the size of
the system.

Given the stronger size dependence and the inability to
observe a jump of the stiffness for bosons interacting via
temperature-dependent interactions, we explore a different
method to locate Tc. If the stiffness in the PF model follows
the Kosterlitz renormalization-group scaling, the stiffness at
the BKT transition Tc in the thermodynamic limit should be
given by [11]

ϒL→∞(T −
c ) = 2

π
Tc. (19)

The standard method of determining the critical tempera-
ture is illustrated in Fig. 3(a). The temperature at which a line
representing ϒ(T ) is crossed by 2

π
T extrapolated to infinite

system size should indicate the real Tc. However, since the
system size is strongly limited due to the extensive numerical
calculations required by exact diagonalization in every MC
step, a more precise approach can be used. Namely, to find the
critical temperature one can exploit the scaling properties of
ϒ . The solution of the renormalization-group equations at Tc

gives [12]

ϒL = ϒL→∞

[
1 + 1

2

1

ln(L) + C

]
, (20)

where C is a constant. Upon inserting ϒL→∞ = 2
π

T into
Eq. (20) we obtain the size dependence of the stiffness ϒ .
However, Eq. (19) is valid only at T = Tc, which implies
that when we fit the MC results to the theoretically calcu-
lated ϒ(L), the fitting errors should be smallest at the critical
temperature, thereby allowing a determination of Tc. This is
shown in the inset in Fig. 3(b).

We propose a different method below that does not involve
a fitting procedure. Combining Eqs. (18), (19), and (20), one
finds that at Tc,{

2

π

∫ β

0
[〈Ē (π )〉β ′ − 〈Ē (0)〉β ′]dβ ′ − 2

}−1

− ln(L) = C.

(21)
Since C does not depend on the system size, if one plots the
left-hand side of Eq. (21) [denoted as AL(T )] as a function
of temperature, lines corresponding to different sizes should
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(a) (c)(b)

FIG. 4. (a) The BKT critical temperature (red solid line) and the position of the specific-heat maximum (blue dashed line) as a function of
g/(g + 1) in order to show the weak- and strong-coupling regimes compactly. The specific heat is obtained by using the fluctuation-dissipation
theorem. (b) The superfluid density ρs (in units of t) of fermions as a function of the coupling g and temperature T . The white dashed line
shows the BKT transition [the same as the red line in panel (a)]. (c) Specific heat for g = 4 as a function of temperature. The red line (FSS)
shows the result of finite-size scaling. In all panels, the lines are only a guide to the eye.

cross at the same point for T = Tc. This is presented in
Fig. 3(b).

One can notice that the vanishing of the fitting errors [pre-
sented in the inset in Fig. 3(b)] and the crossings AL(T ) for
all L in the same point indicate that the itinerant-fermion-
mediated interaction between the classical phases leads to a
phase transition described by the renormalization-group equa-
tions. This means that the phase transition in the PH model is
indeed in the BKT universality class.

The phase transition is driven by a softening of the boson
phase stiffness and correspondingly also the fermion super-
fluid stiffness or superfluid density. The inset in Fig. 3(a)
demonstrates that the reduction of the boson phase stiffness
ϒ occurs primarily due to thermal fluctuations of the phases.
If we freeze these fluctuations and allow only for thermal
fluctuations of the fermions through the broadening of the
Fermi function, i.e., if we ignore entropic effects of the phases
by choosing phase configurations that minimize the interac-
tion energy rather than the free energy, then we find that ϒ

[represented by the red dashed line in the inset in Fig. 3(a)]
remains finite for temperatures an order of magnitude larger
compared to the actual Tc obtained in the correct calculation
with thermal fluctuations included in the bosonic sector as
well.

By finding the critical temperature for different values of g,
one can construct the phase diagram. It is shown in Fig. 4(a),
where the solid red and dashed blue lines represent Tc and
the position of the specific-heat maximum, respectively. The
separation in temperature between the maximum of the spe-
cific heat Cv and the BKT transition is much larger for the PF
model compared to that in the XY model where the separation
is about 10%.

Note that in the strong-coupling regime Tc is inversely
proportional to the coupling strength, as is typical for strongly
correlated systems.

IV. FERMION SECTOR

We next analyze how the development of phase coher-
ence in the bosonic sector affects the spectral properties of
fermions.

A. Spectral function

For a given configuration of the phases �θ , the real-space
fermionic Green function is given by

G(Ri, R j, z) = {z − HPF(�θ )}−1
i j , (22)

where HPF(�θ ) is given by Eq. (1). We average over config-
urations �θ generated in the MC sampling and integrate out
the classical bosonic degrees of freedom. We thus obtain the
fermion spectral function from the imaginary part of the Green
function:

A(k, ω) = − 1

π
Im G(k, ω) (23)

and from that the density of states (DOS)

N (ω) = 1

N

∑
k

A(k, ω), (24)

which are shown in Fig. 5.
Even in weak coupling, the system does not behave like

a BCS superconductor with a gap magnitude that decreases
with temperature and finally closes at Tc. We find in Figs. 5(a),
5(c) and 5(e) for g = 1 instead that the gap closes by fill-
ing up because the single-particle peaks are broadened with
increasing temperature due to the interaction of the fermions
with phase fluctuations in the bosonic sector [13]. The spectral
function does share some aspects of weak coupling in that
the minimum gap occurs at the Fermi energy; the behavior
of the spectral functions for smaller g is similar, just with a
correspondingly smaller gap.

For strong coupling, g = 4 in Figs. 5(b), 5(d) and 5(f),
upon increasing T there are two interesting observations: (a)
a finite gap persists at high T , and (b) the spectral function
looks BEC-like with a minimum gap moving to the � point. A
similar change in the spectral function has been reported in the
attractive Hubbard model on two coupled triangular lattices
[14] at T = 0 and in the full boson-fermion model within the
framework of the bond operator formalism [15]. We report
here evidence for a temperature-driven phase transition from
a BCS superconductor to a disordered Cooper pair metal. We
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. Densities of states and spectral functions. Left column for g = 1: (a) T = 0.01, (c) T = 0.1, (e) T = 1. Right column for g = 4:
(b) T = 0.01, (d) T = 0.1, (f) T = 1. The white dotted lines show the dispersion of BCS quasiparticles Ek = ±√

ε2
k + g2. Note that for g = 4

the gap minimum moved from the (0, π ) point (consistent with behavior in the BCS regime) to the (π, π ) point (consistent with the behavior
in the BEC regime) as the temperature increased.

obtain useful insights by solving the PF model on two sites (at
momenta k = 0, π ); see Sec. III A.

Essentially, temperature affects the fermionic spectrum pri-
marily via the bosonic phases. At low temperatures, fermions
interact with ordered phases and the spectral lines are rela-
tively narrow. At high temperatures, fermions are scattered
by the disordered phases that changes their momenta and
energies and lead to broadening of the spectral lines. Since
the Fermi energy is much higher than the energy scale of the
effective interaction between phases mediated by fermions,
the broadening due to the Fermi-Dirac distribution function is
negligible and does not affect the spectral line shapes. This is
also why the observed BCS-BEC crossover can be attributed
entirely to scattering off the phases. The behavior closely

resembles the disorder-driven BCS-BEC crossover studied
previously [16,17]. In our case, however, the disorder is gen-
erated dynamically by increasing temperature, as opposed to
quenched disorder.

B. Superfluid density

For temperatures up to the BKT transition temperature,
fermion-mediated interaction leads to a finite stiffness of
the boson phase. At the same time, the phase-fermion in-
teraction present in the Hamiltonian (2) induces pairing
among fermions. The pairing amplitude displays a nontrivial
temperature dependence across the BCS-BEC crossover. At
sufficiently low temperatures, the Cooper pairs become coher-
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ent and develop a finite superfluid density given by the Kubo
formula [18],

ρs ≡ Ds

π
= 〈−kx〉 − �xx(qx = 0, qy → 0, iω = 0) (25)

from the difference between the kinetic energy along the x
direction (diamagnetic response) and the transverse current-
current correlation function (paramagnetic response) given by
[19,20]

�xx(q, iωn) = 1

N

∫ 1/T

0
dτ eiωnτ

〈
ĵ p
x (q, τ ) ĵ p

x (−q, 0)
〉
, (26)

where ĵ p
x (q, τ ) is the Fourier transform of the imaginary-time-

dependent paramagnetic current in the x direction,

ĵx(l ; τ ) = eĤτ

[
it

∑
σ

(ĉ†
l+x̂,σ ĉl,σ − ĉ†

l,σ ĉl+x̂,σ )

]
e−Ĥτ , (27)

and ωn = 2πnT .
〈· · · 〉 in Eqs. (25) and (26) denotes a thermal average for a

given configuration of the phases �θ and an ensemble average
over different phase configurations. The former average can
be easily calculated as 1/Z

∑
n〈n| · · · |n〉, where |n〉 is the nth

eigenvector of the Hamiltonian HPF for a given configuration
of the phases. Z = Tre−βH is the partition function for the
same Hamiltonian. The latter average is performed by the MC
for the phases.

Figure 4(b) presents the superfluid density ρs as a function
of interaction g and temperature showing strong reduction of
ρs along the BKT transition line. We conclude that fermionic
superfluidity and bosonic phase coherence occur in the same
parameter regimes. This can be understood in the following
way: below the BKT transition, the phases are mostly co-
herent and ordered and do not scatter fermions, which can
therefore move coherently. In this regime, the PF model can
be accurately described by the mean-field BCS Hamiltonian;
see Figs. 5(a) and 5(b). At temperatures above the BKT tran-
sition, the phases are strongly fluctuating and incoherent and
lead to strong scattering of fermions, resulting in a loss of
superfluidity. Given that the effective phase-phase interaction
is mediated by fermions and the effective fermion-fermion
interaction arises from their coupling to phases, the two sub-
systems are intimately coupled: coherent fermions enhance
boson coherence and vice versa.

C. Single-fermion states

Once long-range phase coherence is lost beyond a critical
temperature, what is the fate of fermions? Do they become
localized or do they remain itinerant?

We first analyze the nature of single-particle states using
the inverse participation ratio, and then we calculate the trans-
port behavior.

The generalized inverse participation ratio [21,22] (IPR) is
defined by

IPR =
∑

ni (|uni|4 + |vni|4)∑
ni (|uni|2 + |vni|2)2 , (28)

where ��n = (un1, . . . , unL, vn1, . . . , vnL ) is the nth eigenvec-
tor of HPF. We calculate the IPR on large systems using the

FIG. 6. The IPR calculated at T = 1 for different coupling
strength. The inset shows the IPR extrapolated to L = ∞.

traveling cluster approximation [9,23], which tends to zero
for delocalized states in the thermodynamic limit and remains
finite for localized states.

Figure 6 shows the IPR at T = 1; in Fig. 1 we mark the
region where the IPR vanishes in the L → ∞ limit for a
range of temperatures. We find that above the BKT transition,
fermions are delocalized only for very weak coupling in the
Fermi liquid phase. Stronger coupling between bosons and
fermions localizes the single-particle wave functions gener-
ating a state with gapless excitations due to their interactions
with disordered phases. The transition between localized and
delocalized single-particle states is almost independent of

(a) (b)

FIG. 7. Temperature dependence of conductivity σdc (a) and re-
sistivity ρdc = 1/σdc (b) for T > Tc and for different interaction
strengths calculated from Eq. (31) in the Cooper-pair-metal (CPM)
state. Only data above Tc are presented since for T < Tc, σdc → ∞
and ρdc → 0 in the thermodynamic limit.
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temperature. There exists a unitary transformation of the
fermionic operators that transfers the bosonic phases to the
hopping integral t → t exp [i(θi − θ j )/2], which introduces a
gauge vector potential. It shows that the localization of the
single-particle wave functions can be understood also as the
localization due to orbital effects of a random magnetic field
[24–26]. In the region marked as Cooper pair metal (CPM)
in Fig. 1, the single-particle fermionic wave functions are
still localized, based on information from IPR, but this region
differs from the FM by the presence of a finite gap in the
spectrum. The reason we refer to it as metal is because of the
transport behavior discussed below. With increasing coupling
g, the gap continues to increase, though the superfluid to in-
sulator transition TBKT which is in the BKT universality class
shows a nonmonotonic behavior. The overall phase diagram
is presented in Fig. 1.

D. Transport

We next discuss the transport properties of the PF model.
The optical conductivity σ (ω) is related to the imaginary-time
current-current correlation function through

�xx(q; τ ) =
∫

dω

π

ωe−τω

1 − e−βω
σ (ω), (29)

where �xx(q; τ ) is the Fourier transform of the correlation
function of the current operator

�xx(q; τ ) = 〈 ĵx(q; τ ) ĵx(−q; 0)〉, (30)

and the current operator is given by Eq. (27). The way 〈· · · 〉
in Eq. (30) is calculated is explained below Eq. (27).

While it is possible to calculate σ (ω) by inverting the
integral relation (29) with the help of the maximum-entropy
method, it can be convenient to estimate the dc conductivity
from its low-frequency behavior [27,28]

σdc = β2

π
�xx(q = 0; τ = β/2). (31)

The explicit form of �xx(q; τ ) is given by

�xx(q; τ ) =〈 ĵx(q; τ ) ĵx(−q; 0)〉
=〈

eĤτ ĵx(q; 0) e−Ĥτ ĵx(−q; 0)
〉

= 1

Z
∑

n

〈n|eĤτ ĵx(q; 0)e−Ĥτ ĵx(−q; 0)|n〉e−βEn

= 1

Z
∑
n,m

〈n|eĤτ ĵx(q; 0)e−Ĥτ |m〉

× 〈m| ĵx(−q; 0)|n〉e−βEn

= 1

Z
∑
n,m

eτ (En−Em )〈n| ĵx(q; 0)|m〉

× 〈m| ĵx(−q; 0)|n〉e−βEn . (32)

For τ = β/2 it takes the following form:

�xx(0; τ = β/2) = 1

Z
∑
n,m

|〈n| ĵx(0; 0)|m〉|2e− β

2 (En+Em ).

(33)

The temperature dependence of conductance σdc and resistiv-
ity ρdc ≡ 1/σdc for different interaction strengths is presented
in Fig. 7.

For all values of g the conductance decreases with in-
creasing temperature. What is remarkable is that while the
IPR indicates localized single-particle states, the transport is
nevertheless metallic. Up to T ≈ 0.25 we observe a T -linear
resistivity, whereas for higher temperatures ρdc ∝ T n, where
n ≈ 1.25–1.35, which indicates a bad metal-type behavior.

V. DISCUSSIONS AND EXPERIMENTAL IMPLICATIONS

It is remarkable that a simple model like the PF model or
the BF model, with no explicit disorder in the Hamiltonian,
generates a rich phase diagram with four distinct phases: (i)
Fermi metal with both gapped and gapless spectra, (ii) Cooper
pair metal with incoherent phases, and (iii) coherent state
of phases and fermions with a nonzero phase stiffness and
a nonzero superfluid density for the fermions. We arrive at
these characterizations of the phases by calculating the IPR
to learn about the single-particle wave functions, the single-
particle fermionic spectral function for the gap structure in
momentum space, the superfluid density for its coherence
properties, and conductivity for electric transport properties.
We also calculate the helicity modulus to characterize the
vortex binding-unbinding BKT transition for the phases.

Kondo lattice and PF model connections: The richness
of the PF model extends beyond the specific realization dis-
cussed here to other platforms, discussed below. Given the
formal correspondence to a model given by Eq. (37), the PF
model can describe magnetic atoms deposited on the surface
of a superconductor.

Starting with a model of localized spins coupled to spins of
itinerant electrons, as in the double-exchange or Kondo-lattice
models [29–31], we obtain the spin-fermion Hamiltonian

H0 = −t
∑
〈i j〉,σ

ĉ†
iσ ĉ jσ − J

∑
iαβ

Si · c†
iασαβciβ, (34)

which in the J/t → ∞ limit can be written in a rotated basis
as

H0 =
∑
〈i j〉

t ′
i j (γ̂

†
i1γ̂ j1 + γ̂

†
i2γ̂ j2) + H.c., (35)

where t ′
i j depends on the spins Si and S j , and γ̂iα describes

spinless fermions, γ̂iα = ∑2
β=1 Ai

αβ ĉiβ, α = 1, 2. The effec-
tive position-dependent hopping integral can be written in
terms of the polar angle (θi) and azimuthal angle (φi) of the
spin Si as t ′

i j = −t[cos θi
2 cos θ j

2 + sin θi
2 sin θ j

2 ei(φi−φ j )] [32].
The Hamiltonian in Eq. (34) is invariant under the simultane-
ous global SU(2) rotation of the electron and localized spins,
so if the polar angle is fixed by, e.g., the spin-orbit coupling or
the pinning effect of an easy-axis magnetic anisotropy energy,
without loss of generality it can be set to θi = π/2. In this
case, the effective Hamiltonian is given by

H0 = −t
∑
〈i j〉

ei(φi−φ j )(γ̂ †
i1γ̂ j1 + γ̂

†
i2γ̂ j2) + H.c. (36)

If the localized spins are not coplanar, the magnitude of the
hopping integral is site-dependent, t → ti j , but our analysis
still applies.
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Next, we add singlet pairing to the model,

H = H0 +
∑

i

�(c†
i↑c†

i↓ + H.c), (37)

which, when rewritten in the γ̂ basis, gives H in the form

H0 = t
∑
〈i j〉,α

ei(φi−φ j )γ̂
†
iαγ̂ jα + �

∑
i,α

(γ̂iαγ̂iᾱ + H.c.), (38)

where 1̄ = 2 and 2̄ = 1. Introducing new fermionic operators
d̂i↑ = eiφi/2γ̂i1 and d̂i↓ = eiφi/2γ̂i2 and defining ηi = φi/2, we
obtain the Hamiltonian

H = −t
∑
〈i j〉,σ

d̂†
iσ d̂ jσ + �

∑
i

(eiηi d̂i↑d̂i↓ + H.c.), (39)

which is formally equivalent to HPF (1). Instead of su-
perfluidity in the bosonic subsystem, this model describes
equivalently the spin stiffness in a system in which itinerant
electrons are coupled to localized spins. Such systems have
recently been studied as possible platforms that host Majo-
rana edge states. Indeed, it has been demonstrated that in
one-dimensional systems described by Hamiltonian (37), the
RKKY-type interaction can induce a helical magnetic struc-
ture, which, when combined with proximity-induced s-wave
superconductivity, can drive the system into a topologically
nontrivial state [33–42].

In most of the recent studies of this model, it is assumed
that the proximity-induced superconductivity in the fermionic
sector is not significantly affected by the magnetic structure.
Based on our analysis above, it is evident that the interaction
works two ways: the itinerant fermions mediate the effective
spin-spin interactions, and at the same time scattering from the
localized spins strongly affects the properties of the fermions.
A self-consistent treatment of the magnetic and supercon-
ducting properties is necessary to describe the proximitized
magnetic chain.

Graphene with SC islands: Graphene decorated with an
array of superconducting islands can also be modeled by an
effective PF Hamiltonian (1) [43–48], in which Cooper pairs
can tunnel directly between islands whose phases fluctuate
with temperature. The BF model suggests that even if the
distance between the islands is larger than the range of the
superconducting proximity effect, phase ordering in the en-
tire array could occur mediated by the (normal) carriers in
graphene that are sensitive to the phases of the superconduct-
ing islands.

Electrons scattering off lattice deformations: Electrons in-
teracting with local lattice deformations can be described as an
extension of the bipolaronic scenario where strong electron-
phonon coupling creates locally bound pairs of small polarons
[49]. For intermediate electron-lattice coupling, bipolarons
are found to coexist with free-electron pairs [50]. An exchange

FIG. 8. Square lattice of one-dimensional Bose-Einstein conden-
sate tubes (red) with their phases (blue arrows). The green lines
represent the hopping of up and down fermions between sites. The
left panel depicts the localization of fermions due to the random
fluctuations of the condensate phases. The right panel shows the
coherent hopping of fermions once the phases of the BEC tubes
become coherent.

of charge between wide band electrons and localized pairs
gives rise to concentration fluctuations that generate super-
conductivity in the two subsystems [51]. This idea has been
applied to high-temperature superconductivity [52–56], in a
generalized form of the plaquette BF model, based on Ander-
son’s RVB scenario [57]. In Ref. [52] it has been demonstrated
that in the BF model a pseudogap opens up that evolves
into a true gap below the critical temperature. Recently, the
boson-fermion model has been adopted to describe resonance
superfluids in the BCS-BEC crossover regime [58].

Cold-atom platforms: Optical lattices afford a highly tun-
able platform in which it is possible to take a 3D BEC of
tightly bound Cooper pairs (molecules) and break it up into a
2D array of 1D tubes by using an optical lattice applied along
two dimensions. Starting from a deep lattice, as the depth is
decreased, tunneling between the tubes can drive long-range
phase coherence across the entire system. In addition to the
bosons, if unpaired fermions are present, they will experience
phase fluctuations arising from the tube-BECs. If the lattice
potential can localize the molecules but allow the unpaired
fermions to tunnel between the BECs, the latter can mediate
interboson interactions leading to long-range coherence of the
isolated bosons, as shown in Fig. 8.
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