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Su-Schrieffer-Heeger (SSH) chains are paradigmatic examples of one-dimensional topological insulators host-
ing zero-energy edge modes when the bulk of the system has a nonzero topological winding invariant. Recently,
high-harmonic spectroscopy has been suggested as a tool for detecting the topological phase. Specifically, it has
been shown that when the SSH chain is coupled to an external laser field of a frequency much smaller than
the band gap, the emitted light at harmonic frequencies strongly differs between the trivial and the topological
phase. However, it remains unclear whether various nontrivial topological phases—differing in the number of
edge states—can also be distinguished by the high-harmonic generation (HHG). In this paper, we investigate
this problem by studying an extended version of the SSH chain with extended-range hoppings, resulting in a
topological model with different topological phases. We explicitly show that HHG spectra are a sensitive and
suitable tool for distinguishing topological phases when there is more than one topological phase. We also
propose a quantitative scheme based on tuning the filling of the system to precisely locate the number of edge
modes in each topological phase of this chain.
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I. INTRODUCTION

In recent years, the field of condensed matter physics has
seen an increasing interest in the study of topological phases
of matter. These phases are characterized by nonlocal and
nonperturbative properties that are protected by topological
invariants, which are robust against perturbations and imper-
fections. The discovery of topological insulators [1–5] and
topological superconductors [6,7] has led to the exploration
of a wide range of topological phases in different materials,
including cold atoms [8] and photonic [9–11] systems. The
study of these systems is not only of fundamental interest but
also has potential applications in various fields, such as quan-
tum computing [12–15], spintronics [16], and magnetometry
[17]. The Su-Schrieffer-Heeger (SSH) model is one of the
simplest models that exhibits nontrivial topological proper-
ties. It is a one-dimensional model originally introduced to
describe the electronic properties of polyacetylene [18,19],
a linear polymer of carbon and hydrogen atoms. The model
is described by a tight-binding Hamiltonian representing the
hopping of electrons between adjacent sites, with two dif-
ferent parameters representing alternating single and double
bonds. The SSH model exhibits two different phases, charac-
terized by the number of edge states that appear in the band
gap at zero energy. In the trivial phase, there are no zero-
energy states, whereas, in the topological phase, there are two
such states that appear at the open ends of the system. Various
extensions of the SSH model have been explored, includ-
ing longer-range tunneling terms that describe the hopping

between second nearest neighbors [15,20,21]. An appropri-
ately extended SSH model may exhibit additional topological
phases, such as a phase characterized by four edge states.

Recent advancements have demonstrated that the ESSH
model can now be replicated in real materials or molecules
in laboratories. Notably, the SSH model has been associ-
ated with certain graphene nanoribbons [22]. There are also
other platforms experimentally available that can represent
the SSH model or its extended variations. Some notable
instances are p-orbit optical ladder systems [23] and bichro-
matic optical lattices with off-diagonal configurations [24]. It
is important to emphasize that even if our particular model has
not been directly simulated experimentally, ultracold atoms
within momentum lattices have successfully captured an ex-
tended variant of the SSH model. This version closely mirrors
the model we have elaborated on in our research [25]. Given
these findings, systems resembling graphene nanoribbons,
whether influenced by Floquet dynamics or not, or systems
with similar characteristics, might very well accommodate the
extended SSH models we have investigated in our study.

High-harmonic spectroscopy in condensed matter is a bur-
geoning field in strong-field attosecond science that has the
potential to uncover the structural and dynamical properties
of materials [26,27]. High-harmonic generation (HHG) is a
nonlinear optical process that occurs when an intense laser
field interacts with a material, producing high-order harmon-
ics of the incident frequency. In recent years, the connection
between strong-field attosecond science and topological con-
densed matter has started to be explored theoretically [28–36]
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and experimentally [37,38]. Despite the lack of success in
finding universal signatures of topology in the high-harmonic
spectroscopy of quantum spin-Hall materials [39], a few sig-
natures of topology have been explored in analyzing the
polarization of the emitted harmonics and the Stokes pa-
rameters [40]. In models with strong electronic interaction,
the effect of doping in high-harmonic spectroscopy has been
analyzed [41].

In the context of the SSH model, theoretical studies
have shown that high-harmonic spectroscopy can be used to
detect topological properties [29,30]. In particular, the high-
harmonic spectra of the SSH model exhibit characteristic
features that allow one to distinguish between trivial and non-
trivial topological phases and to identify the topological edge
states. Nevertheless, it remains unclear whether two different
nontrivial topological phases, with various nonzero numbers
of edge states, can also be identified using HHG.

To address this issue, in this paper, we consider the
extended version of the SSH model, which includes second-
neighbor electronic hopping as studied in Ref. [21]. This
model exhibits topological phases with zero, two, and four-
edge states. We propose a method to distinguish between
these phases using high-harmonic spectroscopy. Our method
is based on the analysis of the nonlinear polarization of the
material, which reveals characteristic signatures of the topo-
logical phases. We show that our method can provide a clear
distinction between materials with two- and four-edge states
and it can be used to identify and control the topological prop-
erties of other topological materials. Our method could have
significant implications for the study of topological phases in
condensed matter and could aid in the development of new
technologies.

The paper has the following structure. In Sec. II, within
subsection II A, we introduce the extended SSH model and
discuss its band structure, topological properties, and phase
diagram in comparison with the standard SSH model. In sub-
section II B, we provide specific details about the induced
laser pulse and the coupling of light to the extended SSH
chain. In subsection II C we shortly describe the numerical
technique required to calculate the high-harmonic spectrum
for three different phases of the system. In Sec. III we discuss
the high-harmonic spectra obtained for three different phases
and investigate the role of filling in accurately determining
the number of edge modes in each of the three phases of the
system. Finally, we summarize our work in the concluding
Sec. IV with a brief outlook and experimental possibilities.

II. THEORY

A. Extended Su-Schrieffer-Heeger model

The Su-Schrieffer-Heeger (SSH) model [42,43] is a the-
oretical model used in solid-state physics to describe the
electronic properties of one-dimensional crystalline systems.
The model considers a chain of alternating atoms in sublat-
tices A and B in a two-site unit cell [30]. The electrons hop
inside the unit cell (intracell) and between nearest-neighbor
unit cells (intercells) with different hopping amplitudes. The
model is thus characterized by a parameter called the dimer-
ization parameter, which represents the difference in the

hopping strengths between the intra- and intercellular bonds.
When the intercellular dimerization is stronger than the intra-
cellular one, it exhibits a nontrivial topological phase with a
bulk gap and supports the presence of topologically protected
edge states at the boundary of the chain. This allows the
SSH model to be a prototypical model of a one-dimensional
(1D) topological insulator. The topological nature of the SSH
model is due to the presence of a chiral symmetry, which is a
discrete symmetry that anticommutes with the SSH Hamilto-
nian and shows that the model is invariant under the exchange
of its two sublattices. It also ensures that, for every positive
energy of the system, there exists a negative energy with the
same magnitude. Interestingly, the energies are also symmet-
ric under swap of the dimerizations and the dispersion relation
is identical and gapped everywhere (insulator), except when
the dimerization is zero, where it is gapless (metal). However,
the system has distinct properties under swap of the dimer-
ization as the eigenvectors differ significantly. In fact, when
the Berry curvature of the eigenvectors in quasimomentum
space is integrated over the entire Brillouin zone, one finds
different topological invariants called Chern numbers [44].
This shows that the two insulating phases are topologically
distinct. Different topological sectors imply the impossibility
of crossing from an insulating phase to another without un-
dergoing a topological phase transition, which involves the
closing of the bulk gap (i.e., the metallic phase where the
winding number is ill defined) of the system. This is why
when the system with a nonzero bulk topological invariant
is put under an open boundary condition, there appears a
zero-energy (edge) mode within the bulk gap of the system,
sharply localized at the boundary separating a topologically
nontrivial region (insulator) from a topologically trivial one.
The noninteracting tight-binding model used in this study
does not consider electron-electron interactions. As a result, it
is possible to obtain precise analytical results for both the band
structure and the winding number, making it a representative
example of a 1D topological insulator [2]. So far, the SSH
model has been experimentally realized in various systems:
cold atoms [45], photonic lattices [46,47], and mechanical
systems [48].

The topological phase diagram of the standard SSH can
be extended to include phases with higher values of topo-
logical invariants if not restricted to only nearest-neighbor
electronic hopping. Allowing for a longer range of hopping,
such as hopping between second-neighbor sites, generates a
model, which we denote as an extended Su-Schrieffer-Heeger
(ESSH) model, extensively studied in Ref. [21]. However,
hoppings only between the different sublattices are included
to preserve the chiral symmetry of the model, which in turn
keeps the topology intact. More specifically, in this work, we
study the Hamiltonian of the 1D ESSH model:

H = J1

N∑
n=1

(ĉ†
n,A ĉn,B + H.c.) + J ′

1

N∑
n=1

(ĉ†
n,B ĉn+1,A + H.c.)

+ J3

N∑
n=1

(ĉ†
n,A ĉn+1,B+H.c.)+J ′

3

N∑
n=1

(ĉ†
n,B ĉn+2,A + H.c.),

(1)
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FIG. 1. Schematic representation of the one-dimensional ESSH
model described by the Hamiltonian [Eq. (2)]. Each blue ellipse
represents a unit cell containing two sites: A-type sites drawn below
and B-type sites drawn above. To keep chiral symmetry intact, we
only include hopping processes between A-type and B-type sites,
including intracell hopping J1, hoppings between neighboring cells
J ′

1 and J3, as well as hopping between next-to-nearest cells J ′
3.

where N is the number of cells in a chain of M = 2N sites in
the chain. In the second quantized notation, ĉ†

n,s (cn,s) is the
electron creation (annihilation) operator in the unit cell n with
sublattices s = A, B. The first term represents intracellular
electron hopping with strength J1, the second represents the
nearest-neighbor intercellular hopping between B in cell n and
A in cell n + 1, and the third is the nearest-neighbor hopping
between A in cell n and B in cell n + 1, while the fourth
term captures the next nearest-neighbor hopping between B
in cell n and A in cell n + 2 (see Fig. 1). In the first quantized
notation, the Hamiltonian in real space can be written as

H = J1

(
N∑

n=1

|n, A〉〈n, B| + H.c.

)

+ J ′
1

(
N∑

n=1

|n, B〉〈n + 1, A| + H.c.

)

+ J3

(
N∑

n=1

|n, A〉〈n + 1, B| + H.c.

)

+ J ′
3

(
N∑

n=1

|n, B〉〈n + 2, A| + H.c.

)
. (2)

As in the standard SSH model, the extended SSH model
Hamiltonian also preserves the three discrete symmetries, chi-
ral, particle hole, and time reversal, and is classified under
the BDI topological class with its topological invariant (the
winding number) belonging to the set of integers Z. On an
open boundary, the ESSH can host different numbers of edge
modes: zero, two, or four edge modes, depending on the
absolute value of its bulk winding number being zero, one,
or two. In contrast, the standard SSH model possesses only
two possibilities—zero or two edge modes on the ends of the
open chain.

It is straightforward to calculate the winding number by
writing down the Hamiltonian in Eq. (2) in momentum repre-
sentation, which can be obtained by replacing

|n, A〉 =
∑

k

e−ikxnA |k, A〉,

|n, B〉 =
∑

k

e−ik′xnB |k′, B〉, (3)

where k index is associated with sublattice A and k′ index is
associated with sublattice B; |k, s〉 is the quasimomentum ket
with momentum k using periodic boundary conditions. In the

rest of the work, we denote the lattice size constant of a. With
this, the Hamiltonian in Eq. (2) reduces to

H =
∑

k

(|k, A〉, |k, B〉)[hx(k)σx + hy(k)σy]

(〈k, A|
〈k, B|

)
, (4)

where

hx(k) = J1 + J ′
1 cos ka + J3 cos ka + J ′

3 cos 2ka,

hy(k) = J ′
1 sin ka − J3 sin ka + J ′

3 sin 2ka. (5)

Due to the presence of discrete translational invariance in the
system, it is reduced to two-level systems in the sublattice
basis for each quasimomentum mode k and can therefore be
easily written down in terms of Pauli matrices σx and σy.
Furthermore, this decomposition into the Pauli basis allows
us to compute the winding number using hx and hy,

W = 1

2π

∫
BZ

hx∂khy − hy∂khx

h2
x + h2

y

dk. (6)

The winding number for this model can have values W = −1,

0, 1, 2, which through the bulk-boundary correspondence di-
rectly yields the number of edge modes the system possesses
in an open boundary condition as two times its absolute value
2|W|. From the energy spectrum plotted in Fig. 2, one can
see the band gap structure, the different number of zero en-
ergy modes or edge modes, and the winding number for the
two most interesting cases when the system (a) has winding
number one and thus one pair of edge modes and (b) has two
pairs of edge modes with winding number two. Fixing the
value of the parameters J1 = J ′

1 = 1, one can vary the other
two parameters J3 and J ′

3 and calculate the winding number to
obtain a phase diagram showing different possible phases in
the ESSH system, as illustrated in Fig. 3.

B. Incident laser field

In this section, we study the coupling of the 1D ESSH
model to a linearly polarized electric field from a laser. The
laser wavelength is assumed to be much larger than the length
of the system and, as such, the coupling to the laser field
is well captured within the dipole approximation. The laser
vector potential and electric field are

�A(t ) = A(t )x̂, �E (t ) = −∂t �A(t ), (7)

where x̂ is the direction along the length of the chain parallel
to the laser polarization. The way in which the light couples
to the matter depends on the geometry of the system. For
instance, in the velocity gauge, the light-matter coupling pro-
vides the hopping elements with Peierls’ phases �A · (�rn,s −
�rn′,s′ ). For concreteness, we assume that �A · (�rn,s − �rn′,s′ ) ∝
n − n′. Therefore, the intracell hopping remains unaffected by
the light, i.e., �A · (�rn,A − �rn,B) = 0, whereas hopping between
neighboring cells acquires a phase A(t ) and hopping between
next-to-nearest cells a phase 2A(t ). Accordingly, we have

J1(t ) = J1, J ′
1(t ) = J ′

1eiaA(t ),

J3(t ) = J3eiaA(t ), J ′
3(t ) = J ′

3e2iaA(t ). (8)

The eigenstates of the N × N-dimensional ESSH Hamil-
tonian (1) are obtained by exact diagonalization in a
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FIG. 2. Energy eigenvalues with 80 sites (in a.u.), showing zero [(a), blue], two [(a), red], and four [(c), green] zero-energy states with
different fixed parameter values of the Hamiltonian [Eq. (2)]. The figures on the right show the parametric plot of hx (k) and hy(k) as defined
in Eq. (4), with two (b) and four (d) zero energy states. The parameters used to generate the figures are as follows: for absence of zero-energy
states J1 = 0.651, J ′

1 = 0.207, J3 = 0.038, and J ′
3 = 0.156; for two zero-energy states J1 = 0.51, J ′

1 = 0.42, J3 = 0.056, and J ′
3 = −0.479; for

four zero-energy states J1 = 0.059, J ′
1 = 0.021, J3 = 0.26, and J ′

3 = 0.7209.

real space single particle basis. The N/2 lowest energy
states (occupied by N electrons, assuming spin degener-
acy) are time evolved within the whole laser pulse duration
consisting of 5 cycles (nc = 5). Assuming atomic units
(h̄ = |e| = me = 4πε0 = 1), the incident laser field has the

FIG. 3. Topological phase diagram of the Hamiltonian [Eq. (4)]
showing various values of the winding number for fixed J1 = J ′

1

varying J3 and J ′
3 (in units of J1), calculated as in Eq. (6).

shape

A(t ) = A0 sin2

(
ωt

2nc

)
sin (ωt ), 0 < t <

2πnc

ω
. (9)

The frequency is set to ω = 0.03 a.u. (corresponding to λ �
1.5 µm and pulse duration τ � 25 fs), and the vector poten-
tial amplitude is A0 = 0.5 (corresponding to a laser intensity
�20 × 1010 W cm−2) throughout the paper. The results which
we discuss in this paper do not depend on the details of the
laser pulse as long as the incident laser frequency is small
compared to the band gap in the insulating phases and the
peak strength of the laser is large enough to generate high
harmonics.

The evolution of the wave function with the time-
dependent Hamiltonian was calculated using the Crank-
Nicolson approximation,

|	(t + δt )〉 = exp[−iH(t )δt]|	(t )〉

≈ 1 − iH(t + δt/2)δt/2

1 + iH(t + δt/2)δt/2
|	(t )〉, (10)

solved in individual infinitesimal δt time steps, with the initial
condition |	(0)〉 being the ground state of the system. The
numerical results in this paper result from time evolving the
wave function in 2πnc/ω steps.
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C. High-harmonic generation

Our primary goal is to estimate the high-harmonic spec-
trum of the ESSH system. Within the semiclassical approach,
for uncorrelated emitters, the spectrum of the radiated light is
proportional to the absolute square of the Fourier transform of
the dipole acceleration [49–51],

P(ω) = |FFT[WBẌ (t )]|2, (11)

where Ẍ (t ) is the acceleration or the double time derivative of
the time-dependent position operator and WB is the Blackman
window function [52]. This window function avoids excita-
tion at high frequencies and abrupt transitions in the spectra,
highlighting the effects below the band gap. To calculate the
time-dependent expectation value of the position operator,
we time evolve all occupied eigenstates b, b ∈ (1, N/2). The
time-evolved single-particle wave function 	b(t ) is then used
to compute

X (t ) =
N/2∑
b=1

N∑
j=1

∑
s=A,B

	
j,s∗
b (t )x j,s	

j,s
b (t ), (12)

where 	
j,s
b (t ) is the amplitude of the time evolved wave func-

tion on site s of cell j and the position x j,s is given by

x j,A = x j,B = ( j − 1) − (a − M )

4
, (13)

where j is the position of each cell with two sites A and
B, as shown in Fig. 1. Essentially, the time-evolved average
positions of all electrons in different (initial) filled eigenstates
are summed to obtain the total position of the electron cloud.

In the next section, we analyze and compare the time-
dependent position and the harmonic response of the system
at three different parameter points, corresponding to three dif-
ferent phases as illustrated in Fig. 2, as follows. (a) Phase P0,
represented by the parameter point J1 = 0.651, J ′

1 = 0.207,
J3 = 0.038, and J ′

3 = 0.156. From the energy spectrum pre-
sented in Fig. 2(a) (blue), we observe the energy band gap
of 0.9 (in atomic units) and the winding number of W = 0
corresponding to the trivial insulator phase. (b) Phase P1,
represented by the point J1 = 0.51, J ′

1 = 0.42, J3 = 0.056,
and J ′

3 = −0.479. It is illustrated in Fig. 2(a) (red), exhibiting
the presence of two zero-energy states that indicate the edge
states, in agreement with the winding number W = 1. (c)
Phase P2, represented by J1 = 0.059, J ′

1 = 0.021, J3 = 0.26,
and J ′

3 = 0.7209. For this phase, we observe in Fig. 2(b) the
presence of four zero-energy states, representing the edge
modes with W = 2. The parameter choices have been made
such that the system has the same band gap and bandwidth in
all three phases, allowing for a clear comparison of the results
amongst all three phases. We also look at the phase transition
point M, which is a metal with the parameters J1 = 0.51, J ′

1 =
0.42, J3 = 1, and J ′

3 = 0.91. The overall goal is to observe
whether, through the time-dependent position operator and the
harmonic spectra, one can identify certain signatures, which
will enable a clear distinction between P0, P1, P2, and M.

III. RESULTS AND DISCUSSIONS

We first look at the expectation value of the total posi-
tion operator of the ESSH model as a function of time, as

FIG. 4. Incident electric field (red, solid line) and the expected
value of the position operator [Eq. (12)] as a function of time for
different topological phases P0, P1, and P2.

illustrated in Fig. 4 for the three different phases P0, P1,
and P2. The position operator has a similar periodicity in
all the phases as that of the incident laser beam [Eq. (9)],
but there is a clear difference in the maximum amplitude
for the three phases. Apparently, the change in the average
electronic position is the lowest in the topologically triv-
ial insulating phase P0 and can be attributed to the overall
localized nature of the electronic cloud for a half-filled insu-
lator. The presence of edge modes makes the system slightly
more metallic and hence the displacement is more in phases
(P1, P2) with more edge modes in the system. This becomes
more apparent as one studies the harmonic spectra of the
system.

As shown in Fig. 4, the expected value of the position
operator is consistently synchronized with the incident field
with a π/2 phase shift. Similarly, the expected value of the
current operator [53] for the ESSH model shows the same
behavior. This is a consequence of the insulating nature of the
ESSH bulk.

In Fig. 5, we plot the logarithm of the absolute power spec-
tra of the harmonic spectra versus the harmonic order (integer
multiple of the incident driving frequency). The harmonic
spectra for P0, P1, and P2 show a plateau at high energies
beyond the band gap of the system. The plateau arises mainly
from interference between electronic trajectories that undergo
interband transitions. A cutoff is also observed at similar har-
monic order for all three curves, as it is primarily determined
by the bandwidth (energy difference between highest and
lowest eigenenergy) of the system, which limits the maximum
energy that the electrons can attain during evolution. However,
the harmonic response below the band gap is different for the
P0 and P1, P2 phases. This region, which in usual semiconduc-
tors is mainly dominated by intraband contributions, has a dip
for P0. However, in phases P1 and P2, we do not observe a dip
below the band gap, because midband gap states are available
for electronic transition due to edge modes. These appear
as clear signals in the harmonic spectra as now transitions
between the filled bulk bands to the midgap edge states are
possible. In contrast, the P0 phase is a trivial insulator with
a bulk gap and no midgap states and thus the bulk states can
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FIG. 5. High-harmonic spectra emitted for the phases: metallic
M, topologically trivial P0, and two different topologically nontrivial
P1 (with two edge modes) and P2 (with four edge modes). The
vertical line corresponds to the value of the band gap (in the units
of the incident laser frequency).

only contribute to the harmonic spectra beyond the band gap.
Consequently, there occurs a dip in the signal below the band
gap for such a phase. This feature that allows one to distin-
guish between the high-harmonic spectra of topologically triv-
ial and nontrivial phases was also observed in previous studies
of the HHG in the SSH model [29,30]. Moreover, it has been
studied in topological superconductors and the topological
nature of the edge modes has been confirmed by showing that
it is robust under local perturbations via the HHG [36].

However, interestingly, it is not easy to distinguish between
the two topological phases based on the harmonic spectra it-
self, as the overall amplitude difference in the time-dependent
position being polynomial does not appear as a big difference
in the harmonic spectra, which is plotted on a logarithmic
scale and depends on the specific values of the hopping param-
eters chosen for these two phases. Despite this, by analyzing
the contributions of both bulk and edge states to the high
harmonics and using the harmonic spectra of the trivial in-
sulating phase P0 and the metallic phase transition point M
as two extreme reference limits to test for metallicity, we can
elaborate below how precise control over the electronic filling
in the ESSH chain allows us to clearly distinguish between
all the different topological phases based solely on the HHG
spectra.

We assume an ESSH chain away from half filling where
the number of electrons in the chain is ν less than N/2. Then
the expectation value of the position operator is given by

X (t, ν) =
N/2−ν∑

b=1

N∑
j=1

∑
s=A,B

	
j,s∗
b (t )x j,s	

j,s
b (t ). (14)

As a consequence, varying the ESSH chain filling, i.e., chang-
ing the value of ν = {0, 1, 2, 3, 4}, affects the HHG spectra
[Eq. (11)] of phases P0, P1, and P2 as shown in Fig. 6.

We first focus on phase P0 [see Fig. 2(a)] and compare the
HHG spectra for various fillings against the one at exactly
half filling (yellow). It can be clearly observed that, for filling
values up to N/2 − 1, the HHG spectra are almost identical
regardless of the filling. In fact, away from half filling, the

FIG. 6. High-harmonic spectra for different phases. (a) Phase P0 (zero edge modes). (b) Phase P1 (two edge modes). (c) Phase P2 (four
edge modes). Different colors correspond to various fillings of the system. The vertical line indicates half of the value of the band gap (in units
of the incident laser frequency).
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spectra have no dips at half the band gap. This is because,
even slightly away from half filling, the system is no longer
an insulator and there are a small number of states available
(depending on the filling) for transition within the bulk states
below the band gap, producing significant HHG spectra from
intraband dynamics within this partially filled valence band.
These HHG spectra resemble those of a metal, as can be seen
by comparison with the green curve in Fig. 5. The order-
of-magnitude difference (in logarithmic scale) between the
spectra at half filling and the one away shows how sensitive
the probe of the HHG spectra is to the filling of the system
that produces metallicity and that does not.

This sensitivity acts as a means of quantitatively distin-
guishing the presence of the number of edge modes in phases
P1 [see Fig. 2(b)] and P2 [see Fig. 2(c)]. By varying the filling
of the system with parameters from the P1 (P2) phase, we see
that the system shows a metallic HHG spectra until N/2 −
2 (N/2 − 3) states are filled; then suddenly it shows a dip
as the bulk of the system becomes insulating when N/2 − 1
(N/2 − 2) states are filled. Thus, by continuously monitoring
the filling, it is possible to count how many states ahead of
half filling the system shows a transition from metallic to
insulating behavior. This difference in the number of states
gives the number of pairs of edge modes in the system.

The dip in the harmonic power spectra at the filling, where
the transition from bulk metallic to bulk insulating behavior
occurs, can be quantitatively determined by summing the in-
verse of the squared value of power spectra below half the
band gap for every value of ν as

Sp(ν) =
�E/2∑
w=0

1

P(ω, ν)2
, (15)

where �E is the bulk band gap energy of the system (edge
modes excluded). The sum is taken over half the band gap; as
expected, the sharp change only affects the harmonic modes
below the band gap in the harmonic spectra.

The transition shows up in this quantity Sp(ν) as a sharp
jump with at least ten orders of magnitude difference. In phase
P0, the transition occurs between the completely filled, ν = 0,
to ν = 1, where Sp(0) ∼ 10Sp(1) says that the number of pairs
of edge modes in the system is zero. In phase P1, the transition
takes place between ν = 1 and ν = 2, where Sp(0) ∼ Sp(1) ∼
10Sp(2) and then the system possesses just one pair of edge
modes. In phase P2, the transition is from ν = 2 to ν = 3,
which changes Sp(ν) as Sp(0) ∼ Sp(1) ∼ Sp(2) ∼ 10Sp(3),
correctly indicating that there are two pairs of edge modes
in the system. We show an illustrative plot of this behavior in
Fig. 7.

IV. CONCLUSIONS

In summary, in this work, we allow for second-nearest-
neighbor hopping in addition to the nearest-neighbor hopping
already present in the standard SSH model, with hopping
terms within a sublattice being forbidden. This creates the
ESSH model with the chiral symmetry in the SSH model
being preserved. However, this expands the topological phase
diagram of the SSH model to now include new topological
phases with higher winding numbers. Such a system under

FIG. 7. Sp(ν ) versus filling for different phases P0, P2, and P4.
It shows a peak when all the states in the bulk are filled and the
edge states start to be filled. One state in the peak represents zero
edge modes or phase P0 [SP0 (ν ) ∼ 109SP4 (ν )], two states in the peak
represent two edge modes or phase P2 [SP2 (ν ) ∼ 107SP4 (ν )], and
three states in the peak represent four edge modes or phase P4.

an open boundary condition has three insulating phases with
zero, two, and four edge modes at each end of the chain.

We shine a five-cycle ultrafast laser pulse with strong inten-
sities and below the bulk band gap frequencies parallel to the
length of the ESSH chain and calculate the emitted harmonic
spectra in response to this illumination. The harmonic spectra
in the linear scale shows that the overall below-the-band gap
response of the system is different for its three phases, with
the amplitude being higher when the system has more edge
modes. However, although the distinction is clearly visible be-
tween the HHG spectra from the trivially insulating versus the
topological ones, the distinction between the two topological
phases is hard to perceive in the logarithmic scale. Therefore,
we did a careful analysis of the HHG spectra as a function
of filling to show that the HHG spectra are very sensitive
to the change from bulk insulating behavior to bulk metallic
behavior, as filling is continuously varied. Therefore, tracking
where the bulk insulating behavior sets in, as a function of
filling, we manage to count off the number of pairs of edge
states in the system. We have also proposed a quantity that
can sharply detect this transition.

Our work concentrates on studying an idealized model
which features different topological phases. Our goal was to
investigate whether and how HHG is suitable for distinguish-
ing between these phases. Of course, the next step will be to
consider the analog phases in real materials. This brings in ad-
ditional challenges: in the present work, we have not included
the effect of scattering between electrons or electron-phonon
and other defects. A phenomenological way to consider such
effects is by including a dephasing time in the analysis [54].
This can help produce a cleaner spectrum by removing longer
trajectories contributing to the HHG spectra. We leave this as
an outlook. In addition, the role of the many-body electron-
electron interaction has been assumed to be negligible and this
has not been considered in this work.

Finally, as an outlook, we would like to point out that pro-
posed HHG spectroscopy can serve as a tool for topological
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phase detection in 2D topological superconductors classified
by an integer-valued Chern number. In topological supercon-
ductors, the nontrivial topology is related to the quantization
of electronic Hall thermal conductance [55–57]. However,
thermal conductance measurements have not reached the re-
quired sophistication to observe the quantization and recently
only machine learning approaches to topological invariants’
detection [58] were proposed. As such, HHG spectroscopy is a
promising tool for Chern number identification in topological
superconductors.
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