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Unraveling multifractality and mobility edges in quasiperiodic Aubry-André-Harper chains
through high-harmonic generation
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We show that high-harmonic spectroscopy offers an advanced avenue for probing electronic properties of
quasicrystals beyond the linear response regime. Focusing on Aubry-André-Harper (AAH) chains, we extract the
multifractal spectrum from the harmonic emission intensity—an essential indicator of the spatial distribution of
electronic states in quasicrystals. Additionally, we address the detection of mobility edges, vital energy thresholds
that demarcate localized and extended eigenstates within generalized AAH models. The precise identification
of these mobility edges sheds light on the metal-insulator transition and the behavior of electronic states near
these boundaries. Merging high-harmonic spectroscopy with the AAH model provides a powerful framework
for understanding the interplay between localization and extended states in quasicrystals for an extremely wide
energy range not captured within linear response studies, thereby offering valuable insights for guiding future
experimental investigations.
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I. INTRODUCTION

Investigating metal-insulator transitions is a fundamental
inquiry within condensed matter physics. Anderson localiza-
tion is a highly illustrative example of such transitions [1],
where a system becomes an insulator due to disorder. To ex-
plore this type of transition, it is common to study disordered
noninteracting models that display Anderson localization.
However, simple one-dimensional Anderson models do not
exhibit metal-insulator transitions, as they remain insulators
regardless of the disorder strength. Recently, quasiperiodic
systems have garnered significant attention as an alternative
means to study localization and criticality. These mod-
els, unlike periodic or disordered systems, reveal nontrivial
localization properties even in one spatial dimension. A well-
known example demonstrating a metal-insulator transition
in one dimension is the Aubry-André-Harper (AAH) model
[2,3]. This model can be viewed in terms of the super-
position of two incommensurate lattices. When one of the
lattices is treated as a weak perturbation, an incommensurate
quasiperiodic potential emerges. The AAH model has been
experimentally realized in various setups, including ultracold
atoms in optical lattices [4–9] and photonic devices [10], al-
lowing researchers to gain deeper insight into the localization
transition. See Appendix D for more details on the experimen-
tal implementation of the model.

For specific values of the quasiperiodic potential in
the AAH model, a transition occurs between ergodic and
localized states [11,12]. In practice, this transition can be ob-
served in transport experiments by studying the dynamics of

particles or waves in these systems and measuring quantities
such as diffusion, conductivity, or a few transport expo-
nents. However, at the critical point, the spatial distribution of
states shows different degrees of localization or delocalization
across the system; as such, the system’s behavior exhibits a
wide range of different scaling behaviors or scaling exponents
at different spatial scales. This behavior at the critical point
of the AAH model, and also characteristic of other quasicrys-
talline systems such as the Fibonacci chain [13], is also called
multifractality. While fractals are objects that can be charac-
terized by a scaling law with one noninteger exponent, the
fractal dimension, for a multifractal this is not enough to de-
scribe its dynamics. Instead, a continuous spectrum of expo-
nents, or a singularity spectrum, is needed. Thus, determining
multifractal behavior in quasiperiodic systems can be a very
challenging task that has attracted strong attention in theoreti-
cal investigations [11,14,15], including also studies of intrigu-
ing consequences on the many-body phases [16]. Experimen-
tally, the energy spectrum of a multifractal system has been
achieved using cavity polaritons via photoluminescence [17].

Moreover, according to scaling theory, in one and two
dimensions, infinitesimal random disorder leads to expo-
nential localization of all single-particle states, resulting in
the absence of diffusion [3]. However, in three-dimensional
Anderson systems, localized and extended states can co-
exist at different energies. The critical energy level known
as the single-particle mobility edge (SPME) separates lo-
calized and extended eigenstates in the energy spectrum
[3,11]. Understanding the SPME is crucial in unraveling
various fundamental phenomena, including metal-insulator
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transitions and the thermoelectric response. Strikingly, some
quasiperiodic systems can manifest localization phase tran-
sitions and SPMEs even in one dimension. The appearance
of SPMEs is predicted by the continuous model of shallow
quasiperiodic potentials [14–16]. However, in the presence
of a tight-binding approximation, in the AAH model, be-
cause of the existence of a self-dual relation, the localization
lengths of states remain independent of the energy, leading
to the absence of an SPME. To generate SPMEs, short-range
[18] or long-range hopping terms [19–21], spin-orbit cou-
pling [22,23], or modified quasiperiodic potentials that violate
the self-duality of the original AAH model [24–27] can be
included to form a generalized AAH model. However, the
observation of SPME requires high-resolution measurements
of electronic states across a wide energy range. Therefore,
experimental techniques with high sensitivity and resolution
are essential.

In this paper, we show that evidence for fractal/multifractal
properties of quantum states in real materials can be obtained
from high-harmonic spectroscopy. This rapidly expanding
field in strong-field attosecond science stands out for its great
potential to uncover the structural, topological, and dynami-
cal properties of materials [28,29]. High-harmonic generation
(HHG) is a nonlinear optical process resulting from the in-
teraction between an intense laser field and a material [30],
gas [31–33], liquid [34–36], or crystal [37], producing high-
order harmonics of the incident frequency. There has been a
great deal of interest in HHG spectra in liquids due to their
statistical effects, where the dynamics exhibits dephasing and
the energy levels have a multiplateau structure [36]. The same
energy band structure is observed in the HHG of nonlocalized
electrons in crystals [38,39]. HHG allows for the generation
of high-frequency harmonics, enabling probing of a broad
energy range in the electronic band structure, including states
near the mobility edge. Recently, HHG spectroscopy has been
proposed as a modern tool for probing the topological phases
of matter [40–44]. Furthermore, HHG is also sensitive to
electronic wave functions and their spatial distribution [45].

By analyzing the nonlinear optical response of 1D qua-
sicrystals, we show that HHG spectroscopy can reveal
information about the localization and multifractal properties
of states. Specifically, the three main results of our work
are as follows: (i) HHG can distinguish between localized
and extended states, even if the energy spectra in both cases
are identical, (ii) HHG is suited to identify and characterize
multifractal states, and (iii) HHG can identify the localization
edge. Hence, a rich picture of the properties of a quasicrys-
tal can be obtained from HHG, combining insights that are
traditionally derived from energy spectra measurements and
transport studies.

II. MODEL

Specifically, our study concentrates on quasicrystals de-
scribed by the AAH model from the point of view of
high-harmonic spectroscopy. By analyzing the intensity of the
harmonics emitted, we demonstrate the potential to obtain the
entire multifractal spectrum or distribution, which reveals cru-
cial information about the localization properties of electronic
states in these quasicrystals. Beyond multifractal analysis, our

research delves into the detection of mobility edges in gen-
eralized AAH models. We show that high-harmonic spectra
can serve as a powerful tool for identifying critical energy
points that separate localized and extended eigenstates. This
provides valuable insights into the metal-insulator transition
and the behavior of electronic states around the mobility edge.
Through the combination of high-harmonic spectroscopy with
the AAH model, our theoretical study sheds light on the in-
tricate interplay between localization and extended states in
quasicrystals.

The AAH model [2,3] is given by the Hamiltonian

Ĥ = −J
N∑

j=1

(c†
j c j+1 + c†

j+1c j ) + 2V
N∑

j=1

cos (2πβ j)c†
j c j,

(1)

where J is the hopping strength between nearest-neighbor
sites and 2V is the amplitude of the on-site potential. Param-
eter β, an irrational number modulating lattice periodicity,
is chosen as the golden ratio (

√
5 − 1)/2, approximated by

β ≈ Fibonacci(n + 1)/Fibonacci(n) with the number of lat-
tice sites N = Fibonacci(n). For the results presented here,
we set N = 610 = Fibonacci(15). The creation (annihilation)
operators, c†

j (c j), create (annihilate) a spinless (or spin po-
larized) electron on lattice site j, and the upper limit of the
sum in the hopping term N instead of N − 1 implies periodic
boundary conditions. In Appendix B we demonstrate that the
size of the system is sufficient to demonstrate all the main
properties of the HHG spectrum.

For a dominant on-site potential, V > J , the single-particle
electronic wave functions are localized, i.e., concentrated to
certain lattice sites, and the material behaves as an insula-
tor, as in the Anderson model with negligible contribution
to charge transport. Whereas, when nearest-neighbor hop-
ping is dominant, J > V , the electrons are delocalized, i.e.,
grossly uniformly distributed at all lattice sites and can exhibit
charge transport in the presence of an infinitesimal electric
field, thus behaving as a metal. By implementing a dual-
ity transformation of the form c(†)

k = 1√
N

∑
j e±i2πβk jc(†)

j for
the AAH model, a critical point, V = J , can be identified
where the model is self-dual and exhibits multifractal prop-
erties [2,46–48]. The effect of this transformation is to go
to a momentum-space-like representation where wave func-
tions that are delocalized in real space are localized in the
dual space and vice versa. This is true except at the critical
point, where the wave functions are localized and delocalized
simultaneously in both spaces, thus exhibiting multifractal
behavior. The duality relation also establishes a remarkable
equivalence of energy levels in the AAH model: for a given
choice of parameter, V/J = α, and for its inverse, V/J = α−1,
the energy levels are identical. Despite the identical energies,
the single-particle states differ significantly, as these regions
belong to distinct phases with opposite localization profiles.

III. COUPLING WITH LIGHT

We now couple the AAH model with a strong linearly
polarized incident laser pulse. Our objective is to analyze the
HHG spectrum, obtained via a windowed Fourier transform
of the time-dependent lattice current operator, and identify
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quantitative indicators of localized and delocalized phases
within the AAH model. The HHG spectra carry crucial in-
formation about both the energy levels and the eigenstates of
the system.

In the regime where the laser wavelength is much larger
than the length of the system, the laser field coupling is well
represented by the dipole approximation. The incident laser
vector potential and electric field are

�A(t ) = A(t )x̂, �E (t ) = −∂t �A(t ). (2)

In the velocity gauge, the light-matter coupling induces
a phase difference in the electronic hopping, dependent
on the distance between neighbor sites, the Peierls phase,
�A · (�rn − �rn′ ), and therefore the time-dependent hopping
amplitude is

J (t ) = Jeie(n−n′ )A(t )/h̄ = JeieA(t )/h̄, (3)

where e is the electron charge and we assume the lattice con-
stant a = 1. The distance is given in units of lattice constants
and A(t ) is a time-dependent vector potential that describes
the shape of the laser pulse,

A(t ) = A0 sin2

(
ω0t

2nc

)
sin (ω0t ), 0 < t <

2πnc

ω0
. (4)

The number of cycles is nc = 5, and the laser field frequency
is ω0 = 0.004 with amplitude A0 = 0.4.

The time-dependent Hamiltonian of the generalized AAH
model is

Ĥ (t ) =
N∑

j=1

(J (t )c†
j c j+1 + H.c.)

+ 2V
N∑

j=1

cos (2πβ j)

1 − b cos (2πβ j)
c†

j c j . (5)

The motion of the carriers within the bands creates a macro-
scopic current observable, with the current operator in the
velocity gauge [41,49],

Î (t ) = i
N∑

j=1

(J (t )c†
j c j+1 − J∗(t )c†

j+1c j ), (6)

and the expectation value is given by

I (t ) =
ν∑

j=1

〈ψ j (t )|Î (t )|ψ j (t )〉, (7)

where ν is the number of particles in the system (filling), and
|ψ j (t )〉 is the time evolution of each occupied single-particle
energy state from t = 0. Using the Crank-Nicolson approxi-
mation, the time evolution of the wave function is calculated
as follows,

|	(t + δt )〉 = exp[−iH(t )δt]|	(t )〉

≈ 1 − iH(t + δt/2)δt/2

1 + iH(t + δt/2)δt/2
|	(t )〉, (8)

with time step δt and initial state |ψ j (t = 0)〉 that is the jth
eigenvector of the Hamiltonian (10).

(a)

(c) (d)

(b)

FIG. 1. (a) The HHG spectra for extended (V/J = 5−1) and lo-
calized (V/J = 5) phases. In the extended phase J = 0.15 ≈ 40h̄ω0

(red) and in the localized phase V = 0.15 ≈ 40h̄ω0 (blue). The sys-
tem is half filled. (b) Corresponding energy spectra for both phases
(overlapping). (c) and (d) The same as in panels (a) and (b), but for
V/J = 1.

The Fourier transform of the derivative of the time-
dependent current is proportional to the emitted radiation in
the frequency domain,

P(ω) = |FFT[İ (t )]|2. (9)

IV. LOCALIZATION-DELOCALIZATION

In Fig. 1(a), we present the high harmonic emitted from
the interaction of a pulse laser field with a system in the AAH
model for V/J = 5−1 and V/J = 5. For comparison, Fig. 1(b)
shows the energy spectrum which is identical for both phases.
Despite the equal energy levels, the high-harmonic spectra
are crucially different, with a magnitude difference in the
emission power for the two phases, highlighting the sensitivity
of the HHG spectrum to the spatial structure of the eigenstates.
The spectra of the extended phase (in red) exhibit metallic
behavior with high emission power. In contrast, the localized
phase (in blue) has features of insulating materials. In stark
contrast to HHG in noninteracting semiconductors, where the
HHG spectrum shows metallic or insulating behavior depend-
ing on the filling of a band, the high-harmonic spectrum from
the AAH model does not depend on the filling, as either all
single-particle states are completely localized or delocalized
for a given value of the model parameters. Importantly, the
HHG spectrum also carries useful information about the en-
ergy spectrum, in particular the position of the band edges.
This is most pronounced in the localized phase (blue curve),
where the HHG spectrum has dips/cutoffs [vertical green
lines in Fig. 1(a)]. These coincide with the band edges in
the energy spectrum [horizontal green lines in Fig. 1(b)]. The
origin of this coincidence is most obvious for the highest
one: The corresponding energy equals the total bandwidth of
the system and no emission is possible at higher frequencies.
Similarly, the edges of the other band also define frequencies
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(a)

(b)

(c)

FIG. 2. (a) Fractal dimension as a function of q. (b) Hurst expo-
nent as a function of q. (c) Width of curves Dq (line) and h(q) (dots)
comparing a multifractality of the eigenstates and HHG spectra.

at which the emission probability is reduced by the spectral
gap. Since interband processes require energy higher than the
energy gap, only intraband transitions can contribute to the
emission below the gap. As a result, the size of the energy gap
[marked by the purple line in Figs. 1(a) and 1(b)] corresponds
to a frequency in the HHG spectrum below which emission is
suppressed.

V. MULTIFRACTALITY

At the critical point, V = J , the AAH model shows char-
acteristic features common to both localized and delocalized
phases, thus presenting multifractal behavior. We show the
high harmonic and energy spectrum for the multifractal point
in Figs. 1(c) and 1(d). Again, the green lines in these plots
demonstrate a relation between cutoffs in the HHG spectrum
and band edges in the energy spectrum. Now, the energy
spectrum has a fractal structure with splitting of the bands into
subbands separated by smaller gaps. Notably, such a structure
is also observed in the HHG signal. Again, the purple line in
Figs. 1(c) and 1(d) shows that also information about the size
of the largest energy gap is reflected in the HHG spectrum.
While it might be hard to resolve also smaller gaps, we show
that the degree of localization of eigenstates and the multi-
fractal spectrum can directly be read out from the harmonic
spectrum by using multifractal detrended fluctuation analysis
(MF-DFA). Therefore, the HHG spectrum of a multifractal
system complements measurements of bare energy spectra.

The standard measure that quantifies the q fractality of a
quantum state is the multifractal dimension Dq [50,51]. A
completely localized state has dimension Dq ≈ 0, while a
completely delocalized state has dimension Dq ≈ 1, and in
both cases Dq is nondispersive. Figure 2(a) shows Dq for the
AAH model for different ratios V/J . At the critical point V =
J , Dq varies around 0.5 and is dispersive with q, indicating
multifractality. Multifractals have multiple scaling exponents,
so that their fractal dimension depends on q. Thus, to quantify
the nature of the eigenstates, we define �Dq ≡ max(Dq) −
min(Dq) which is maximal at the multifractal point, while it
is close to zero in the localized and delocalized phases, as
illustrated in Fig. 2(c).

Now, we analyze dynamical indicators of multifractality.
In particular, we will show that multifractality also mani-
fests itself in the nonlinear optical response. To this end, we
demonstrate that the generalized Hurst exponent h(q) [52]
characterizing the high-harmonic spectrum is closely related
to the multifractal dimension Dq of the AAH eigenstates.
h(q) is typically used as a measure of the long-term memory
of a time series. Here, instead of in the time domain, we
calculate it in the frequency domain. As explained in de-
tail in Appendix A, this exponent can be extracted from the
power spectrum of HHG. This means that in our case h(q)
quantifies how rapidly the correlations between the emitted
power decrease as the distance between frequencies increases.
We observe that for monofractals h(q) is almost constant,
while for multifractals it strongly depends on q. As shown
in Fig. 2(b) for different V/J , h(q) is constant for both q < 0
and q > 0, with a jump around q = 0. Importantly, the mag-
nitude of this jump increases as we approach the multifractal
point V = J . Then, similarly to Dq, �h(q) ≡ max[h(q)] −
min[h(q)] for multifractals is greater than for monofractals
and allows one to quantify multifractality. The red dots in
Fig. 2(c) show that �h(q) has a peak for values V/J close to
the critical point that closely resembles the behavior of �Dq.
This comparison clearly indicates that h(q) is interconnected
with the fractal dimension Dq, which, in turn, demonstrates
that the static multifractal features of eigenstates can be de-
coded from the HHG spectrum using the MF-DFA technique.

VI. MOBILITY EDGE

We next turn to the study of mobility edges, i.e., critical
energies that sharply separate localized and delocalized states
for fixed system parameters. While the original AAH Hamil-
tonian does not exhibit a mobility edge at finite energy, such a
feature appears already in simple generalizations of the AAH
Hamiltonian. For concreteness, we choose

Ĥ =
N∑

j=1

(Jc†
j c j+1 + J∗c†

j+1c j )

+ 2V
N∑

j=1

cos (2πβ j)

1 − b cos (2πβ j)
c†

j c j, (10)

where for any value of b 
= 0 the system shows a mobility
edge, as this term breaks the self-duality relation in the model
[53]. Notably, there exists an analytical solution that yields the
relation of the mobility edge with the hopping strength and the
on-site potential [53,54].

A key quantity that can identify mobility edges between
localized and delocalized states is the inverse participation
ratio IPR(ν) = ∑

i |ψν,i|4, where ψν,i is a component of the
νth eigenstate |	ν〉 = |ψν,1, ψν,2, . . . , ψν,L〉 localized on the
ith lattice site [55].

A zero IPR is a signature of delocalization, whereas a unit
IPR represents localization. A sharp change in IPR indicates
the presence of a mobility edge. Subsequently, we show how
the energy spectra and IPR of each eigenstate vary with V/J ,
for zero and nonzero b, and how this behavior of IPR can also
be captured directly in HHG.
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FIG. 3. Energy levels of Hamiltonian (10) as a function of V/J
(a) in the absence of SPME (b = 0) and (b) in the presence of SPME
(b = 0.5). Colors represent the IPR of the corresponding eigenstate.
For eigenstates to the left of the dashed line IPR = 0. For b = 0.5 its
analytic form is E/J = 4 − 4V/J [53].

We illustrate this in Fig. 3, where the energy spectrum
versus V/J is shown for two cases where b = 0 and b = 0.5.
The colors represent the IPR of the corresponding eigenstates.
For b = 0 we observe a symmetric energy spectrum with IPR
that depends only on V/J , but not on the energy (or filling).
Thus, depending on the modulation amplitude, the eigenstates
are either all localized or all delocalized, which indicates the
absence of the mobility edge. For b 
= 0 the energy spectrum
is asymmetric and the IPR shows a filling-dependent behavior
typical for energy spectra with the mobility edge. To examine
whether the HHG spectra can show a signature of mobility
edges, we time-evolve the model while changing the filling ν

as described in Sec. III. In Fig. 4 we compare the spectra in
two cases, b = 0 and b = 0.5 for V/J = 0.3 and V/J = 1. As
can be seen in Fig. 3, for V/J = 0.3 all eigenstates are delo-
calized, and therefore the HHG spectra are similar. However,
in proximity to a critical point for V/J = 1, the spectra differ
significantly. As a rule of thumb, we find that the differences
in the high-harmonic spectrum originate from differences in
the energy spectrum if the harmonics correspond to energies
higher than the band gap of the system. However, contri-
butions below the band gap strongly depend on the filling,
which is connected with the existence of the mobility edges.
To quantify this observation, we introduce a logarithm of the

(a) (b)

FIG. 4. Examples of the HHG spectra for V/J = 0.3 (a) and
V/J = 1 (b) for b = 0 (red line) and b = 0.5 (blue line). For V/J =
0.3 all eigenstates are delocalized and both spectra are similar. For
V/J = 1 eigenstates are localized for b = 0, but there is SPME for
b = 0.5. Vertical lines indicate the largest gap �E/h̄ω0 between
energy levels. These plots are for filling given by occupation of 450
lowest states (out of 610).

(a) (b)

FIG. 5. Comparison of IPR (a) and −� (b) for the case where
the SPME is present in the energy spectrum (b = 0.5). ν is the
eigenstate number. Red points indicate the mobility edge calculated
analytically [53].

total power emitted in frequencies below the largest gap in the
energy spectrum �Eb/h̄ (marked by vertical lines in Fig. 4),

�b = log10

∫ �Eb/h̄

0
Pb(ω)dω, (11)

where Pb(ω) denotes the density of power emitted at fre-
quency ω for the AAH model [see (9)]. The index b indicates
that the corresponding quantities were calculated for this par-
ticular value of parameter b in the potential in Hamiltonian
(10). Limiting the frequencies to �E/h̄ means that �b is
dominated by intraband contributions [56].

In Fig. 5 we compare this quantity with the IPR for a model
with SPME (b = 0.5). The comparison shows a striking
similarity between � and IPR. It can be seen that the critical
value of V/J that separates the extended and localized states
corresponds to a jump in the below-band-gap contribution of
the HHG spectrum defined in Eq. (11). The behavior of these
two quantities is opposite; that is, IPR for extended states is
smaller than for localized states, whereas the opposite is true
for �. Therefore, to emphasize the similarity of the qualitative
behavior, in Fig. 5(b) we present −�. The threshold is not as
sharp as in the case of IPR, but IPR, in contrast to �, is not
directly accessible in experiments. By comparing � with the
analytical result for the SPME given in Ref. [53], we conclude
that the criterion for localization is � ≈ 2.5. In this way, we
have shown that the mobility edge can be detected solely from
the high-harmonic spectra below the band gap.

Characterization of the entire multifractal spectrum and
detection of mobility edges pose significant experimental
challenges for quasiperiodic systems. The results presented
here address these problems through the lens of HHG and
pave the way for future experimental investigations, con-
tributing to a deeper understanding of the multifractality and
mobility edges in quasicrystals and their potential applications
in condensed matter physics.
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APPENDIX A: MULTIFRACTAL DETRENDED
FLUCTUATION ANALYSIS

The challenging theoretical problem of quantum localiza-
tion of excitations in disordered systems has greatly advanced
since Anderson’s [1] initial paper. It has been discovered that
the transition between localization and delocalization induced

by disorder is characterized by intricate spatial patterns in
wave functions. This pattern is believed to have a multifractal
structure at the localization threshold. A similar behavior is
known to be also present in the AAH model, studied in this
work.

The quantity commonly used to study the
localization/delocalization transition is the inverse
participation ratio (IPR) defined in the main text. For critical
eigenstates, the IPR follows an anomalous scaling with the
system size that depends on their multifractal dimension
Dq [57]. Moreover, Dq can be used directly to quantify the
degree of localization of the wave function [50,51]. It can
be calculated by partitioning the νth eigenstate |	ν〉 into M
segments of size l and calculating the generalized mean of
cumulative probability in each segment,

Dq(|	ν〉) = 1

q − 1

ln
[∑M−1

k=0

(∑l
j=1 |ψν,kl+ j |2

)q]
ln(M−1)

, (A1)

where |	ν〉 = |ψν,1, ψν,2, . . . , ψν,L〉 is an eigenstate written
in the position basis, l = 4, and M = �L/l�. In the main text,
we demonstrate that this quantity can be estimated from the
optical response. That is, we relate it to the generalized Hurst
exponent h(q) of the HHG spectrum. In the following, we
briefly describe how it can be calculated in the framework
of multifractal detrended fluctuation analysis (MF-DFA) [52].
The MF-DFA is an extension that enhances the conventional
detrended fluctuation analysis (DFA) to handle nonstation-
ary time series exhibiting multifractal scaling characteristics.
By examining the local scaling of fluctuations in relation to
smooth trends across segmented polynomial fits, the MF-DFA
enables precise estimation of the multifractal parameters of a
signal, such as its multifractal spectrum. In our analysis, the
multifractal signal depends on frequencies rather than time.

First, we obtain the series profile—we calculate a cumula-
tive sum of a mean-centered data,

y(ω) =
∫ ω

0
[log10 P(ω′) − 〈log10 P〉]dω′, (A2)

where 〈log10 P〉 is the arithmetic mean. Through the MF-
DFA calculations we use the data up to 200th harmonic. The
curve y(ω) is then divided into segments (“boxes”) of size
s, with Ns being the total number of segments. In the next
step, each yν (ω) [part of y(ω) that is inside the segment ν =
1, 2, . . . , Ns] is being fitted with a second-order polynomial
yν (ω), so we calculate local trends. We have verified that using
higher-order polynomials does not give a better agreement
between results obtained from the HHG spectra and those
calculated directly from the wave functions. We remove the
trends by subtracting the fitting from the respective data part
yν (ω), then we calculate the variance for each segment,

F 2
ν (s) = 1

s

∫ νs

(ν−1)s
[yν (ω) − yν (ω)]2dω. (A3)

Next, we obtain the generalized mean (power mean) of a
variance over all segments, see Fig. 6 for an example,

Fq(s) =
{

1

Ns

Ns∑
ν=1

[
F 2

ν (s)
]q/2

}1/q

. (A4)
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FIG. 6. Example of Fq(s) [see Eq. (A4)] behavior for V/J = 1.25
and several values of q.

The calculations are repeated for various segments sizes s,
ranging from 2ω0 to 100ω0, with a fixed exponent q. Then,
the curve Fq(s) is fitted with a power law, Fq(s) ∝ sh(q). The
exponent h(q) is a generalized exponent, closely related to
the generalized Hurst exponents H (q); H (q) = h(q) − 1 for
h(q) > 1.

APPENDIX B: FINITE-SIZE EFFECTS

The requirement that the system size be a Fibonacci
number makes it difficult to perform finite-size scaling. In
particular, the time evolution of the wave functions would be
challenging for a very large system. Since some of the results
are for half filling, we need the number of eigenstates (and
so the number of lattice sites) to be an even number. The
main results of this work have been obtained for size 610
[Fibonacci(15)]; the next even Fibonacci number is 2584. For-
tunately, by comparing the current results with those obtained
for a smaller system, we can show that the current system
size already guarantees the convergence of the high-harmonic
spectrum and the quantities we calculate from it. Figure 7
shows a direct comparison of the spectra for systems with
144 and 610 lattice sites, whereas Fig. 8 shows the same as
Fig. 2(c), but also for a system with 144 lattice sites. These
figures demonstrate that the HHG spectra depend only quan-
titatively on the size of the system with all the characteristic
features located at precisely the same frequency for 144 and
610 lattice sites. The energy spectra are almost identical; the
same is true for the position of the maximum in �Dq and
�h(q) which indicates the multifractal point.

APPENDIX C: HIGHER LASER FREQUENCY

It is possible to reduce the number of harmonic orders that
is necessary to observe the full spectrum up to the cutoff, by
using a higher laser frequency. However, it also reduces the
resolution of the obtained spectra. Here we present effects
of a frequency 5 times higher than in the main part of the
paper (ω0 = 0.02) which results in the cutoff of the order
∼30 harmonics. The localized and extended phases can be
distinguished through HHG spectra and most of the charac-
teristic features of the spectrum in the insulating phase are
still preserved, as shown in Fig. 9. The SPMEs can also be
observed by the method described in the paper, but in this
case the results are more affected by noise, especially for low
values of V/J; see Fig. 10. However, we report that for the

(a)

(b)

(c)

(d)

FIG. 7. Comparison of the HHG spectra for V/J = 1 (a) and
V/J = 2.5 (c) for systems with 610 (red line) and 144 (blue line)
lattice sites. The corresponding energy spectra are shown in panels
(b) and (d), respectively. Since the energy spectra are presented for
different system sizes, the eigenvalue numbers were normalized and
denoted as “filling” on the horizontal axis in panels (b) and (d).

correct multifractality predictions via the MF-DFA analysis, a
higher resolution is needed.

APPENDIX D: EXPERIMENTAL IMPLEMENTATION

Finally, let us discuss some experimental implications of
our theoretical study of HHG as a detection tool for multifrac-
tality and mobility edges in the quasiperiodic Aubry-André-
Harper chain. Obviously, our study applies immediately to
1D models in the context of synthetic quasicrystals, such as
AAH chains implemented in atomic or photonic platforms
(see [4–10]). However, 1D quasicrystals also serve as building
blocks of quasicrystalline systems in two or three dimensions,
see in this context Ref. [13] for a review on the Fibonacci
chain, with similar multifractal behavior as the critical AAH
chain. Three-dimensional quasicrystals were discovered in
aluminum-manganese alloys in the 1980s [58].

FIG. 8. The same as Fig. 2(c), but for systems with 144 and 610
lattice sites.
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(a)
(b)

FIG. 9. (a) The HHG spectra with the laser parameters nc =
10, ω0 = 0.02 for extended (V/J = 5−1) and localized (V/J = 5)
phases. The system is half filled. (b) Corresponding energy spectra
for both phases (overlapping).

Systems beyond 1D are of particular interest in our context
because the efficiency of HHG depends on the number of
electrons involved in the emission process. For an estimate
of the efficiency, we will consider two cases here: (i) an array
of noninteracting 1D chains, like in this paper; (ii) a truly 2D
quasicrystal.

(i) 1D estimation. We can consider 2000 chains of the
length 10 000 on a substrate. More generally, stacking a layer
of active material on a substrate with different periodicity
could automatically generate quasiperiodic coupling. This can
be achieved using standard magnetic beam epitaxy, or better,
van der Waals materials, as is done in twistronics [59–61].
We could thus have 10 000 electrons, filling the lowest

(a) (b)

FIG. 10. Comparison of IPR (a) and −� (b) for ω0 = 0.02,
nc = 10 and the case where the SPME is present in the energy
spectrum (b = 0.5). ν is the eigenstate number. Red points indicate
the mobility edge calculated analytically [53].

band, but in different orbitals. We estimate optimistically-
conservatively they will contribute as 5000 (half of their
number). All of them should be phase matching because of
the regular spatial arrangements. This gives a factor of 108.
This means that the signal of Fig. 4 for many-particle re-
sponse will be a factor 1016 higher. Conversion efficiency
(see Figs. 1 and 4) will then reach 10−6 to 10−4, comparable
to HHG in atomic clouds or solids. This is an optimistic
estimate but is not so far from a feasible experimental
truth.

(ii) 2D estimation. Here clearly lattices of 10 000 × 2000
are possible. Thus, a 2D model is expected to be the
same/similar to that we studied here.
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