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Recently, the learning by confusion (LbC) approach has been proposed as a machine learning tool to determine
the critical temperature Tc of phase transitions without any prior knowledge of its even approximate value.
The method has been proven effective, but it has been used only for continuous phase transitions, where the
confusion results only from deliberate incorrect labeling of the data. However, in the case of a discontinuous
phase transition, additional confusion can result from the coexistence of different phases. To verify whether
the confusion scheme can also be used for discontinuous phase transitions, we apply the LbC method to
three microscopic models, the Blume-Capel, the q–state Potts, and the Falicov-Kimball models, which undergo
continuous or discontinuous phase transitions depending on model parameters. With the help of a simple model,
we predict that the phase coexistence present in discontinuous phase transitions can indeed make the neural
network more confused and thus decrease its performance. However, numerical calculations performed for the
models mentioned above indicate that other aspects of this kind of phase transition are more important and can
render the LbC method even less effective. Nevertheless, we demonstrate that in some cases the same aspects
allow us to use the LbC method to identify the order of a phase transition.

DOI: 10.1103/PhysRevE.108.024113

I. INTRODUCTION

Over the last decade, the growth of computational power
and the development of new algorithms have helped machine
learning (ML) methods to gain great popularity in various do-
mains. They are widely applied to image recognition, natural
language processing, or medical diagnostics [1]. The ability
to identify, classify, and interpret unusual patterns also makes
them suitable for solving condensed matter physics problems,
which, due to the exponentially large Hilbert space, are com-
putationally expensive [2].

ML methods perform especially well in acceleration
of Monte Carlo simulations [3–9]—they can provide an
alternative representation of complex quantum wave func-
tions [10,11] and are capable of identifying classical [12–18],
topological [19–23], and quantum phase transitions [24–27].
The last application, that is, finding the critical temperature
(Tc), is usually based on supervised learning, where a neu-
ral network is trained using a set of labeled configurations
(e.g., spin configurations). The labels indicate whether a given
configuration represents the low- or high-temperature phase.
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However, the problem is that to assign labels, one has to know
at least approximately the value of the critical temperature.

To overcome this difficulty, a scheme called learning by
confusion (LbC) has been proposed [28]. This method allows
one to determine the transition temperature without any prior
knowledge of its even approximate value. As such, it can be
classified as an unsupervised learning method, but it exploits
supervised techniques with data that are deliberately labeled
incorrectly. The idea is based on the observation that the
performance of a neural network is best if the data are labeled
correctly and decreases with increasing discrepancy between
the true and assumed critical temperatures. The applicability
of the LbC method has been demonstrated in the study of
classical spin models [28], frustrated magnetic models [29],
nuclear gas–liquid [30], systems with double phase transi-
tions and quasi-long-range order [31], complex networks [32],
transitions in polariton lattices [33], many-body localization
in quantum chains [34,35], the entanglement breakdown of
quantum states [36], and ferrimagnetic alloys [37].

Modern classification of phase transitions distinguishes
two types of transitions, namely, discontinuous (first-order)
and continuous (second-order) transitions [38,39]. The dis-
tinction between these two is quite obvious in the thermody-
namic limit: some physical quantities, such as heat capacity or
susceptibility, become divergent at the critical point in the case
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of first-order phase transitions. However, this phenomenon
is not observable when it comes to the second-order phase
transition, for which the transition is always smooth.

In numerical simulations, the discrimination between con-
tinuous and discontinuous transitions can be difficult because
all singularities in the temperature dependence of physical
quantities disappear due to the finite size of a system. Instead,
finite peaks occur at a critical point in both types of transi-
tions [40]. To overcome this issue, one can look at the energy
or magnetization histograms close to the transition tempera-
ture or calculate the Binder-Challa-Landau cumulant [41–45].
However, these methods require finite-size scaling, which can
be very computationally demanding. A good example here is
the Falicov-Kimball (FK) model [46], tackled with the Monte
Carlo approach. Since the Hamiltonian of the FK model con-
tains coupled quantum and classical degrees of freedom, it
has to be diagonalized in each Monte Carlo iteration. As a
result, the limits for the maximum size of systems available
for numerical simulations are lower and finite-size scaling is
more difficult. The application of this technique is necessary
to properly establish the character of a phase transition, for
example, using the histogram and the Binder-Challa-Landau
cumulants methods. The latter, however, does not perform
equally well for all microscopic models. For instance, it has
been demonstrated in Refs. [47,48] that for the FK model
the cumulant method cannot be used to determine the critical
interaction U ∗ separating the continuous and discontinuous
phase transitions.

A promising alternative to the approaches mentioned above
is the use of ML methods, which can offer a substantial
increase in computational performance compared to classical
methods [15,49]. Thus, in this paper, we focus on one of the
ML algorithms, namely, the LbC scheme, and verify its appli-
cability to the problem of classification of phase transitions.
Based on the thermodynamic properties of phase transitions
close to Tc, we introduce an intuitive theoretical model that
describes the performance of a neural network for first- and
second-order phase transitions. Next, using the LbC method,
we perform a numerical analysis of phase transitions for the
FK model, the Blume-Capel (BC) model [50,51], and the
q-state Potts (qP) model [52], and juxtapose the results with
the predictions of the theoretical model. We show that for BC
and qP models, the neural network correctly identifies the crit-
ical temperature independently of the type of phase transition.
For the FK model, Tc is correctly determined only in the case
of a continuous phase transition. For a discontinuous phase
transition, the prediction accuracy shows a large plateau at a
value close to 1, which leads to the ambiguity of Tc. The ex-
istence of this plateau cannot be explained by the coexistence
of low- and high-temperature phases (which is characteristic
for discontinuous phase transitions), as we show with the
help of the theoretical model. Our results indicate that the
LbC scheme finds aspects of discontinuous phase transitions
which are weakly connected to characteristic thermodynamic
quantities.

The paper is organized as follows. In Sec. II, we in-
troduce a theoretical model for neural network prediction
accuracy. Then, in Sec. III, we describe microscopic model
Hamiltonians to which we apply the LbC scheme. In Sec. IV,
we discuss the standard methods of phase transition charac-

FIG. 1. The fraction of the low-temperature phase α as a function
of temperature in the case of a continuous phase transition at Tc.
T ′

c indicates the fictitious critical temperature used to label the data.
The hatched area, showing the amount of incorrectly labeled data,
increases linearly with increasing distance between Tc and T ′

c

terization. Section V explains the details of the calculation
methods and the results obtained. Section VI contains a dis-
cussion of the results and the final conclusions.

II. THE LEARNING BY CONFUSION METHOD AND
PHASE COEXISTENCE

The LbC algorithm was specifically designed to recog-
nize phase transitions in physical models [28]. It is a hybrid
algorithm that combines the features of supervised and un-
supervised learning. In this scheme, a neural network goes
through a training phase, but the training data set is not al-
ways correctly labeled, leading to the confusion of the neural
network. In the following, we summarize the key steps of the
algorithm. A detailed discussion can be found in Ref. [28].

Suppose that the input data set includes samples gener-
ated in the temperature range [Tmin, Tmax] and that the critical
temperature Tc lies between Tmin and Tmax. In the learning
process, a fictitious critical temperature T ′

c is assumed and the
samples are labeled according to the true critical temperature.
Depending on how far T ′

c is from the real Tc, different amounts
of data will be incorrectly labeled, as marked in Fig. 1 by the
hatched rectangular.

In the next step, the data are used to train the neural net-
work and the performance of the resulting model P(T ′

c ) is
determined. The whole training process is repeated for several
different values of T ′

c lying in the range from Tmin to Tmax and
P(T ′

c ) is plotted. For many models, P(T ′
c ) has a characteristic

W shape and the true Tc can then be found from the position
of the central maximum of P(T ′

c ).
There are many different metrics used during the evalua-

tion of ML classification models (accuracy, precision, recall,
etc.). In the simple analysis presented in the current section,
we will measure the performance of the neural network using
the simplest metrics, i.e., accuracy, defined as the number of
correct predictions divided by the total number of samples.
Later, when analyzing numerical results, we will use the area
under receiver operating characteristic curve (AUC–ROC)
measure.

A. Continuous phase transitions

We start our analysis with the case for which the LbC
scheme has been proposed, that is, with a continuous phase
transition. For this kind of transition, the two distinct phases
do not coexist. This situation is depicted in Fig. 1. As demon-
strated there, the amount of incorrectly labeled data increases
linearly with the distance |Tc − T ′

c |, and thus one can expect

024113-2



LEARNING BY CONFUSION APPROACH TO … PHYSICAL REVIEW E 108, 024113 (2023)

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75
T ′

c − Tc

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1
−

A

continuous

discontinuous

FIG. 2. The performance P(T ′
c ) ≡ 1 − AT ′

c
/δT obtained from

the simple toy model introduced for continuous and discontinuous
phase transitions. The amount of incorrectly labeled data is for a
continuous transition AT ′

c
∝ |T ′

c − Tc|, whereas for a discontinuous
one it is given by Eq. (5).

that the performance P(T ′
c ) linearly decreases when moving

away from Tc. Indeed, it has been shown in Ref. [28] that for
some models P(T ′

c ) ∝ |Tc − T ′
c |.

To make the discussion more concrete, let us introduce a
measure of the amount of incorrectly labeled data as

AT ′
c

=
∫ Tmax

Tmin

ζ (T ′
c , T )dT, (1)

where ζ (T ′
c , T ) is the fraction of data points at temperature

T that have incorrect labels for a given T ′
c . Performance

P(T ′
c ) decreases with an increase of AT ′

c
and, for the sake of

simplicity, we assume that for T ′
c ≈ Tc P(T ′

c ) = 1 − AT ′
c
/δT ,

where δT ≡ Tmax − Tmin. This assumption guarantees that if
the neural network is trained with randomly labeled data,
one obtains P(T ′

c ) = 0.5, i.e., the probability that it correctly
classifies any configuration is 0.5.

Let us denote by α the fraction of the system occupied by
the low-temperature phase. For a continuous transition, there
is no phase coexistence and therefore

α(T ) =
{

1 for T < Tc

0 otherwise. (2)

Then, as can be seen in Fig. 1,

ζ (T ′
c , T ) =

{
1 for T ′

c < T < Tc or Tc < T < T ′
c

0 otherwise. (3)

By inserting Eq. (3) into Eq. (1), one obtains AT ′
c
, which

increases linearly with the distance between T ′
c and Tc. It is

shown by the red line presented in Fig. 2. This is true only in
the thermodynamic limit, where the phase transition is sharp.
However, for any finite system, a finite width of the phase
transition will decrease the accuracy. It can be seen in works
where the LbC method has been applied [28,29,31,32,37].

B. Discontinuous phase transitions

The situation is different for a discontinuous phase tran-
sition, where the low- and high-temperature phases coexist
around the critical point. To demonstrate that the neural net-
work is more confused in this case than in the case of a
continuous phase transition, we propose a simple model. We
do not present or develop a theory of discontinuous phase
transitions but propose a toy model that can be a rough
approximation of the situation in numerical simulations for
finite-size systems. It is independent of the phase conversion
mechanism, i.e., whether it is spinodal decomposition or nu-
cleation, and its validity will later be verified by Monte Carlo
simulations for three different model Hamiltonians.

Let us assume that below T1 only the low-temperature
phase exists in the system. Then, when the temperature ex-
ceeds T1, a fraction of the high-temperature phase is formed
and increases linearly with the temperature up to T2, where the
high-temperature phase occupies the entire system. Denoting
by α the fraction of the low-temperature phase (1 − α is the
fraction of the high-temperature phase), one can write

α(T ) =

⎧⎪⎪⎨
⎪⎪⎩

1 for T � T1

T2 − T

T2 − T1
for T1 < T � T2

0 for T2 � T .

(4)

Between T1 and T2, both phases coexist and this is the temper-
ature range in which the energy distribution has two maxima,
one of them increasing and the other decreasing as the tem-
perature changes from T1 to T2. The equal magnitude of these
peaks signals Tc. In our model, we assume Tc = 1

2 (T1 + T2).
Note that the model can be applied only to finite-size systems
since in the thermodynamic limit, both T1 and T2 would con-
verge to Tc.

As can be seen in Fig. 3(a), within the framework of this
model, even for T ′

c = Tc there are some incorrectly labeled
data points. Indeed, at Tc there is a mixture of equal num-
bers of configurations from the low- and high-temperature
phases. Therefore, independently of the attached labels, 50%
of the configurations will be incorrectly labeled. When the
distance between T ′

c and Tc increases, AT ′
c

also increases. The
explicit form of ζ (T ′

c , T ) depends on the relation between
T, Tc, T ′

c , T1, and T2 (see Fig. 3) and will not be given here,
but it can easily be inferred from Fig. 3 that the integral shown
in Eq. (1) gives

AT ′
c

=
⎧⎨
⎩

1

�
(T ′

c − Tc)2 + �

4
for |T ′

c − Tc| < 1
2�

|T ′
c − Tc| for |T ′

c − Tc| > 1
2�,

(5)

where � ≡ T2 − T1. This dependence is shown by the blue
dashed line in Fig. 2.

The intuitive toy model given by Eq. (2) has been intro-
duced only to illustrate the idea and to estimate the difference
in accuracy between continuous and discontinuous phase
transitions. As can be seen there, one can expect a well-
pronounced maximum around Tc in the case of the continuous
phase transition and a rather flat temperature dependence in
the case of the discontinuous transition.

In the following, we verify this idea for the FK, BC, and
qP models in which, depending on the model parameters, a

024113-3
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(a)

(b)

(c)

FIG. 3. The same as in Fig. 1, but for a discontinuous phase
transition. In the simple model, it is assumed that the low- and
high-temperature phases coexist between T1 and T2. As in Fig. 1,
the hatched area is proportional to the amount of incorrectly labeled
data. The panels show situations corresponding to different values of
the fictitious critical temperature: T ′

c = Tc (a), T1 < T ′
c < Tc (b), and

T ′
c < T1 (c).

continuous or discontinuous phase transition occurs. In par-
ticular, we demonstrate that the proposed explanation is too
simple to precisely describe the shape of the accuracy versus
temperature dependence. Nevertheless, numerical calcula-
tions show that there are cases where the LbC approach can
still be used to recognize the order of the phase transition, al-
though the underlying mechanism is different. It is important
that this method is most efficient for the FK model, where it is
not easy to determine the kind of phase transition. Therefore,
most of the work will be related to this model.

III. MODELS AND METHODS

To verify the hypothesis described in the preceding section,
we applied the LbC scheme to three models, which in different
parameter regimes exhibit either continuous or discontinuous
phase transitions. Although most of the work focuses on the
FK model, a similar analysis was also carried out for the
qP and BC models. Numerical calculations were performed
for two-dimensional square lattices with periodic boundary
conditions. Most of the results presented in the main text
are obtained for 16 × 16 systems. Nevertheless, we verify
the results for lattices of different sizes, from 10 × 10 to
26 × 26. The comparison shows that the difference between
the behaviors for continuous and discontinuous transitions is
only quantitatively affected by the system size. Moreover, as
presented in Appendix A, the main effect we present in this
paper becomes more pronounced with increasing size.

A. The Falicov-Kimball model

The FK model was originally proposed to explain the
metal-semiconductor transition in SmB6 and metal ox-
ides [46]. It describes the interaction of itinerant light particles
(Bloch electrons) with heavy, localized ones. The latter can
represent different physical objects, such as localized ions,
dopants, localized ( f ) electrons, or heavy atoms in optical
lattices. In the following, we will use the term “ion” for
the heavy particles. In the second quantization language, the
Hamiltonian of the FK model can be written as

H = −t
∑
〈i, j〉

c†
i c j + U

∑
i

niwi. (6)

The first term in Eq. (6) describes the kinetic energy of itin-
erant (spinless) electrons with t denoting the nearest-neighbor
hopping energy and c†

i (ci) representing the creation (anni-
hilation) of an electron at lattice site i. The second term
is responsible for the on-site electron-ion Coulomb interac-
tion with U and ni denoting the Coulomb potential and the
electron particle number operator, respectively. w = 0 (w =
1) indicates that the site i is unoccupied (occupied) by an
ion. Although the Hamiltonian (6) does not include a direct
coupling between ions, there exists an effective long-range
interaction mediated by electrons. This effective interionic in-
teraction leads to the self-organization of ions which, in turn,
gives rise to temperature-driven order-disorder phase transi-
tion. Finite-temperature Monte Carlo simulations have shown
that for sufficiently small values of the Coulomb potential U/t
the phase transition is discontinuous, while for interactions
stronger than a critical value U ∗/t ≈ 1 the transition changes
its character and becomes continuous [53].

B. The q–state Potts model

The qP model is a generalization of the Ising model for q
possible spin orientations (projections) [52] determined by the
angle θn:

θn = 2πn

q
, n = 0, 1, . . . , q − 1. (7)

Two spins interact only if they point in the same direction on
nearest-neighboring sites,

H = −J
∑
〈i, j〉

δsi,s j , (8)

where si( j) = 0, . . . , q − 1 represents the spin direction at site
i ( j) given by θi (θ j), δ is the Kronecker delta, and the sum-
mation runs over all pairs of nearest neighbors. The coupling
between spins leads to an order-disorder phase transition,
which is of the first order for q > 4 and second order for
q � 4 [54,55].

C. The Blume-Capel model

The third model we discuss here is the BC model. It can
be viewed as the Ising model for spin S = 1, in which the
external magnetic field that polarizes the spins along the z axis
is replaced by an anisotropy field D [50,51]:

H = −J
∑
〈i, j〉

sis j + D
∑

i

s2
i . (9)
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TABLE I. Model parameters used in this paper.

Parameters
Continuous Discontinuous

Model transition transition

Falicov-Kimball (FK) U = 4 U = 0.5
q-state Potts (qP) q = 2 q = 10
Blume-Capel (BC) D = 0 D = 1.98

The first term in Eq. (9) denotes the usual spin-spin interaction
between neighboring sites, with J denoting the exchange en-
ergy, while the second term describes the interaction of spins
with the anisotropy field D.

The system undergoes a continuous or discontinuous phase
transition, depending on the value of D [56,57]. The phase
diagram of the BC model contains a tricritical point, which,
according to the predictions obtained from Monte Carlo sim-
ulations, is estimated in the thermodynamic limit as kBTc/J =
0.609(4), Dc/J = 1.965(5) [58].

D. Neural networks and data sets

To demonstrate that the LbC method can be used to de-
termine the kind of phase transition, we apply it to the three
models described above. From a broad parameter space, we
choose two representative sets for which the systems undergo
continuous and discontinuous phase transitions. These param-
eters are listed in Table I. The energy units in our calculations
are set by the hopping integral t = 1 for the FK model and
by J = 1 for the qP and BC models. The training data for the
neural network are generated with classical MC simulations
for the qP and BC models and with a combination of MC and
exact diagonalization for the FK model. For each temperature,
we generate 104 statistically independent configurations. The
data are sent to a convolutional neural network with a single
convolutional layer. More details of the architecture of the
neural network are included in Appendix B. When training
the neural network, we use the AUC–ROC as the metrics of
model performance P(T ′

c ) [59].

IV. DETERMINATION OF THE NATURE OF THE PHASE
TRANSITIONS

The standard method used to numerically determine the
order of a phase transition is based on the finite-size effects
that occur in discontinuous phase transitions [41–43,45,60].
It uses an anomaly behavior of the energy distribution P(E )
in the discontinuous phase transition at the critical point Tc.
MC simulations usually generate the Gaussian distribution of
energy P(E ) at a given temperature T , whose width indicates
the value of specific heat Cv (T ). However, this is only entirely
true for the continuous phase transition. When it comes to the
discontinuous one, the situation is different. A single Gaussian
distribution is observed only away from Tc. In the vicinity of a
phase transition, P(E ) can be approximated by a superposition
of two weighted Gaussians centered at energies E− and E+,
corresponding to two coexisting phases [53]. Therefore, an
insightful study of the energy distribution can serve as a hint
of whether one deals with continuous or discontinuous phase
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FIG. 4. Probability distribution of energy at temperatures close
to the critical temperature for the FK model (top row), qP model
(middle row), and the BC model (bottom row). Plots in the left
(right) column correspond to the continuous (discontinuous) phase
transition. Points represent the MC data, lines are fits to the data.

transitions. Figure 4 shows the distributions obtained from our
MC calculations for the three models studied in this paper. In
the left (right) column, energy distributions for a continuous
(discontinuous) phase transition are presented. The existence
of two Gaussians in Figs. 4(b), 4(d) and 4(f) corresponding to
discontinuous phase transitions is evident.

To make our analysis more qualitative, we also estimate the
order of the phase transition using the Binder-Challa-Landau
cumulant [41,43] VL, defined as

VL = 1 − 〈E4〉L

3〈E2〉2
L

. (10)

This quantity is known to have slightly different behavior for
different types of phase transitions [43,45,61–63]. When a
transition is continuous, a small minimum appears in VL at
the transition point, which is associated with the peak in the
specific heat. The minimum scales with the size of the system
L and disappears when L → ∞. On the contrary, when the
transition is discontinuous, the minimum in VL survives in the
thermodynamic limit. Figure 5 shows VL for the three models
in the vicinity of the phase transition. One can see that for the
BC and qP models, VL behaves as described above, while in
the case of the FK model [Fig. 5(b)], the effect is extremely
weak. The relative change of the cumulant at the phase
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FIG. 5. The Binder-Challa-Landau cumulant VL plotted as a
function of temperature for the FK model (top row), the qP model
(middle row), and the BC model (bottom row). The plots in the
left (right) column correspond to the first-order (second-order) phase
transition. In the case of the FK model, peaks in the cumulant are of
order 10−6 to 10−4 and therefore we present ṼL = (VL − 0.6666) ×
104 on the vertical axis in (a) and (b).

transition is of the order of 10−4 for the continuous phase
transition and 10−6 for the discontinuous transition. Thus, in
this case, the cumulant method cannot be used to determine
the kind of phase transition. The difference between the FK
and the two other models is that while the qP and BC models
are classical, in the FK model quantum degrees of freedom
are coupled to classical degrees of freedom. The phase tran-
sition takes place in both subsystems at the same temperature
(the charge susceptibility for the localized particles and the
specific heat that is calculated for the fermions have peaks at
the same temperature [53]), but there are two different energy
scales in this model. The first one is defined by an effective,
fermion-mediated interaction between the localized particles
driving a phase transition. The other, defined by the Fermi en-
ergy and the coupling to the classical particles, determines the
behavior of the fermions and is significantly higher than kBTc.
The cumulant is calculated from fluctuations in the energy of
the fermions. Because such fluctuations are weakly affected
by the phase transition, its appearance is hardly visible in the
temperature dependence of VL.
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FIG. 6. AUC–ROC versus temperature for continuous (left
column) and discontinuous (right column) phase transitions: (a) the
FK model, (c) the qP model, (e) the BC model; (b), (d), (f)—same
as (a), (c), (e), respectively, but for the discontinuous phase tran-
sition. Vertical black dashed lines depict the critical temperature
extracted from MC simulations. The green bars represent statistical
errors calculated for 16 × 16 systems. For the sake of visibility, their
magnitude was multiplied by 10.

The cumulant method also has some limitations for
classical models. The distinction between weak first-order
transitions and second-order transitions, due to the large cor-
relation length, requires long MC simulations on large lattice
sizes [42,45,60]. It is therefore desirable to find another
method that would allow one to determine the nature of phase
transition, even on relatively small lattices. This is particu-
larly important for models such as the FK model, where this
method does not work.

V. RESULTS

Figure 6 summarizes the main result of this paper. The
AUC-ROC curves are plotted versus temperature for model
parameters corresponding to both continuous (left column)
and discontinuous (right column) phase transitions. For all
models, the accuracy has a W-like shape typical for the LbC
method in the wide temperature range, but we show only the
vicinity of the central maximum, which is essential for our
discussion. To verify how the results depend on the size of
the system, we performed simulations for L = 10, . . . , 26.
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Two main effects can be observed. For the continuous phase
transition, the shape of the AUC-ROC curve depends only
weakly on the size of the system, but the maximum value of
the accuracy at Tc converges to one as the size increases. On
the contrary, for the discontinuous phase transition, the max-
imum value of the accuracy at Tc is almost size independent,
while the shape of the AUC-ROC curve changes significantly.
Importantly, as the system increases, for all models studied,
the maximum becomes less and less pronounced. In Fig. 6, we
also present error bars, which were calculated for a 16 × 16
system. The magnitude of the uncertainty clearly indicates
that for the first-order phase transitions the tendency to flatten
the maximum is not due to statistical errors. The finite size
scaling and the method by which the uncertainty was deter-
mined are discussed in Appendix A.

One can see in Fig. 6 that, for continuous phase transi-
tions, the accuracy always has the maximum exactly at the
critical temperature, as predicted by the LbC method and our
theoretical model. In the case of discontinuous phase tran-
sitions [Figs. 6(b), 6(d) and 6(f)], the result depends on the
system. For the BC and qP models, the maxima of AUC-ROC
align with the true Tc extracted from MC simulations, but
are softer than for continuous phase transitions, in agreement
with the theoretical model. Strikingly different is the result
for the FK Hamiltonian shown in Fig. 6(b). Instead of a
soft maximum, the AUC-ROC has a large plateau located at
temperatures lower than and equal to Tc. The plateau spreads
over a temperature range much wider than that of the region
of phase coexistence. Additionally, this range increases as the
size of the system increases. Therefore, its presence cannot
be explained by the additional confusion induced by the co-
existence, and the toy model is not sufficient to explain its
presence.

To explain the origin of the plateau, we analyze the dif-
ference between the ion configurations generated by the MC
simulations below and above Tc. Figure 7 shows the tempera-
ture dependence of the concentration of defects C in a perfect
checkerboard order of the ions (ground state configuration
of the FK model) and the corresponding AUC-ROC. Here, a
single defect is defined as the deviation of a lattice site from
the configuration corresponding to the checkerboard pattern,
as illustrated in Appendix D. Different panels show results for
different values of the interaction U . For interaction U = 0.5,
which leads to a discontinuous phase transition, C(T ) for
T � Tc is much steeper than for U = 4, for which the system
undergoes a continuous phase transition. By fitting a linear
function to regions of growth of C(T ) in Figs. 7(a) and 7(d),
we found that the slope of C(T ) for U = 0.5 is approxi-
mately five times greater than for U = 4 [64]. This means
that differences between configurations generated at two close
temperatures are much more pronounced for a discontinuous
phase transition than for a continuous one.

This explanation is supported by the results presented in
Fig. 8, where we show the distributions of the defect con-
centration P(C) at three close temperatures. When the system
undergoes a continuous phase transition [Figs. 8(a)–8(c)] and
when T > Tc for a discontinuous phase transition [Fig. 8(f)],
P(C) are almost identical for such small temperature incre-
ments. On the contrary, for U = 0.5 and T � Tc [Figs. 8(d)
and 8(e)], the distributions for temperatures that differ by

FIG. 7. The AUC-ROC curve (red) and the concentration of de-
fects C (blue dots) versus temperature for the FK model and for
different values of U : (a) U = 0.5, (b) U = 1, (c) U = 2, (d) U = 4.
A defect is defined as a deviation of the lattice site from the configu-
ration corresponding to the checkerboard pattern of the entire lattice.
For U = 0.5, the phase transition is discontinuous and changes to
continuous for U ≈ 1.

FIG. 8. Probability distribution of defect concentration C for the
FK model at different temperatures. Left column: For a continuous
phase transition, U = 4. Right column: For a discontinuous phase
transition, U = 0.5.
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FIG. 9. Qualitative differences between configurations at two
close temperatures plotted as a function of temperature T : derivative
of defect concentration �C ′(T ) (red dashed line) and the corre-
sponding neural network accuracy AUC-ROC (solid blue line) of
classifying the configurations from the temperatures T and T + δT
as belonging to two different phases. (a), (c), and (e) present data for
discontinuous phase transition, while (b), (d), and (f) for continuous
phase transitions, for the F-K, Potts, and BC models, respectively.
The vertical dashed line depicts Tc extracted from MC simulations.

δT = 0.001 are significantly different. We argue that this
difference along with the specific temperature dependence of
P(C) creates sufficient conditions for the neural network to
recognize configurations from the plateau region as qualita-
tively different and thus learns the concentration of defects.
To confirm or refute this conjecture, we performed explicit
tests of the ability of a neural network to identify different
concentrations of defects. To do that, we trained the neural
network with configurations generated at only two very close
temperatures T and T + δT , labeling them as low- and high-
temperature phases, respectively. We used δT = 0.005 kBT/t
for the FK model and δT = 0.02 kBT/J for the BC and Potts
models. Then, sweeping T in a broad range, we calculated
the effectiveness of the network in distinguishing between the
configurations generated at T and T + δT , and checked how
this effectiveness depends on the slope of C(T ). The results
are presented in Fig. 9, where AUC-ROC is compared to
the derivative of C(T ) [approximated as C ′(T ) ≈ �C(T )/δT ,
where �C(T ) = C(T + δT ) − C(T )]. It can be seen that the
AUC-ROC is exactly 0.5, which is the accuracy of a ran-
dom classifier, unless C ′(T ) is really large. For instance, for
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FIG. 10. Concentration of defects C(T ) as a function of temper-
ature for continuous phase transitions for the qP model (a) and the
BC model (c). (b) and (d) show the same as (a) and (c), respectively,
but for the discontinuous phase transition. The vertical lines depict
the critical temperature determined in MC simulations.

second-order phase transitions of the AUC-ROC is equal to
0.5 in the whole temperature range because the concentration
of defects grows relatively slowly with temperature [see also
Figs. 10(a) and 10(c)] and, as discussed above for the FK
model, their distributions are indistinguishable. For discontin-
uous phase transitions, the AUC-ROC peaks around Tc when
C ′(T ) is above a certain threshold value [Figs. 10(b), 10(d)
and 10(f)]. For the qP and BC models, it occurs only in an
extremely narrow temperature range around Tc and is caused
by an almost steplike increase in the defect concentration
at Tc, shown in Figs. 9(d) and 9(e). Thus, according to our
argumentation, no plateau can be expected there. A plateau
is observed for the FK model with U = 0.5 [Fig. 9(b)], within
the same temperature range and with almost the same value of
AUC-ROC ≈1 as in Fig. 7, when the network was trained us-
ing the entire data set. The plateau is visible when C ′(T ) � 17
and disappears when C ′(T ) falls below this value. This proves
that the neural network classifies the configurations from the
temperature range in which the plateau exists, as qualitatively
different (low- and high-temperature ones, for example), even
if they belong to the same low-temperature phase.

In Appendix A, we show that this behavior becomes even
more visible as the system size increases. In particular, the
temperature range where the plateau occurs for the FK model
becomes wider, and the value of AUC-ROC increases. This
is related to the change in the shape of C(T ) with the size
shown in Fig. 11(a). While the slope increases only slightly,
the region of fast increase of the defect concentration moves
towards lower temperatures. As can be seen in the left column
in Fig. 6, the AUC-ROC also increases for the continuous
phase transition, which can be attributed to the decrease of
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FIG. 11. C(T ) for the FK on lattices of different sizes for U =
0.5t (a) and U = 4t (b).

the width of the phase transition and steeper C(T ), as for the
FK model seen in Fig. 11(b). This relation between network
performance and C(T ) for different system sizes is an addi-
tional argument that supports the idea of the network’s ability
to learn the defect concentration.

VI. SUMMARY

In this paper, we have applied Monte Carlo calculations
and the LbC ML method to study phase transitions in three
microscopic models. We demonstrated that the efficiency of
the LbC method in recognizing the kind of phase transition
strongly depends on the character of the transition. In partic-
ular, we have shown that (i) in the case of a discontinuous
phase transition, this method cannot always be used to deter-
mine the critical temperature and (ii) the shape of the LbC
accuracy potentially can be used to identify a discontinuous
phase transition. This behavior was predicted with the help
of a simple model that describes spin configurations close to
continuous and discontinuous phase transitions.

Our results show that for the BC and qP models, the
performance of LbC in recognizing the kind of phase tran-
sitions is weak, and in some cases insufficient for a direct
practical application. Although the distinction between first-
and second-order transitions increases as the system size in-
creases, the required size can make calculations unfeasible.
However, for these models, the standard cumulant method
should be applied. For the FK model, the neural network is
able to capture local differences between configurations in
the low-temperature phase with almost perfect accuracy. This
ability leads to a qualitatively different shape of overall classi-
fication accuracy, making the LbC method an efficient tool for
discriminating between continuous and discontinuous phase
transitions in this model. It is an important result because
the Binder-Challa-Landau cumulant, being a standard method
used in this context, performs very badly for the FK model.

While training the neural network requires additional com-
putational time and memory, there are advantages to using the
proposed approach, especially for the FK model. The most
obvious one is that it is sufficient to train the network only
once for a given model. The trained network can then be
used for other model parameters. In addition, for a convo-
lutional neural network, the number of operations increases
almost linearly with the size of the system, which makes the

finite-size scaling relatively easy, provided the configurations
are already generated.
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APPENDIX A: FINITE-SIZE SCALING
AND STATISTICAL ERRORS

Figure 6 shows the temperature dependence of AUC-ROC
for different sizes of the systems. When approaching the
thermodynamic limit, the behavior of the system close to Tc

changes from a crossover to a true phase transition. Peaks
in specific heat and magnetic susceptibility become narrower,
and so does the temperature region where the critical fluctua-
tions occur.

To check whether these changes in network performance
are consistent with our conjecture of the network’s ability to
identify defect concentrations, we calculated how C(T ) for the
FK model is affected by the size of the system. The results
are presented in Fig. 11. One can see there that these results
indeed correspond to those presented in Fig. 6. For U = 0.5t ,
the region of the fastest increase in C(T ) shifts towards lower
temperatures, leading to a widening of the plateau. U = 4t
C(T ) becomes steeper around Tc and thus the network perfor-
mance increases. Finite-size effects are one potential source of
unreliability of the results obtained. Another is the uncertainty
of the results predicted by the neural network. To estimate
its magnitude, we used a method proposed in Ref. [65]. It
has been shown there that a neural network with arbitrary
depth and nonlinearities, with dropout applied before every
weight layer, is mathematically equivalent to an approxima-
tion to the probabilistic deep Gaussian process. Then, the
classification uncertainty can be obtained by collecting the
results of stochastic forward passes through the network with
an additional dropout layer. The error bars presented in Fig. 6
were obtained for dropout with probability p = 0.5.

Apart from calculating the error bars, to make our predic-
tions more confident, for each presumable critical temperature
T ′

C , the accuracy of the neural network prediction was val-
idated on a randomly chosen testing data set (random split
in training and testing data sets in proportion 80% to 20%).
However, in any case, we did not observe that our model
overfits—the difference between AUC-ROC received for the
training and testing data sets were of the order of 0.01–0.05%.
It further confirms the reliability of the proposed model.

APPENDIX B: COMPUTATIONAL DETAILS

The input data sets are generated using Metropolis Monte
Carlo simulations. The BC model is simulated with the stan-
dard MC with the local update method. For the qP model,
to accelerate the calculations, we used the Wolff cluster
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FIG. 12. Architecture of the neural network used during the LbC
scheme analysis. The net consists of one convolutional layer with 256
2 × 2 filters, one subsampling (max pool 2x2) layer and two fully
connected layers with ReLU activation function. The output layer is
activated with the sigmoid function given by Eq. (B2).

algorithm [66]. In the case of the FK model, the configurations
are computed by applying a modified version of the classical
Metropolis algorithm, where the interaction energy is replaced
by the free energy obtained as a result of numerical diago-
nalization of the Hamiltonian for a given ionic configuration.
More details about this method can be found in Ref. [53].

Each of the models mentioned above is implemented on
a 16 × 16 square lattice with periodic boundary conditions.
At a given temperature, the system is first relaxed to reach
thermal equilibrium, and then 10 000 snapshots of the system
states are taken in step intervals adjusted to the autocorrelation
length.

For all models studied, we use a neural network consisting
of one convolution layer (CNN) with 256 filters of shape 2 ×
2, one max-pooling layer reducing twice the dimensionality
of the MC configurations, and two fully connected layers at
the end (Fig. 12). The convolutional and first fully connected
layers are activated with the ReLU function defined as

ReLU = max(0, x). (B1)

The output layer is composed of one neuron that is activated
with the sigmoid function σ (x),

σ (x) = 1

1 + e−x
, (B2)

returning the probability of a configuration belonging to the
high-temperature phase.

The network is trained with the Adam optimization
algorithm [67] with the optimal choice for the learning rate
η = 0.001. To reduce overfitting, we also apply, during the
training process, the L2 regularization penalty technique [68]
together with the early-stopping method [69].

For a given temperature, 8000 out of 10 000 statistically
independent Monte Carlo configurations are used in the train-
ing, while the remaining 2000 configurations are added to the
testing set. Taking into account that each LbC computation
requires configurations corresponding to 100 different tem-
peratures, the total number of configurations used within the

FIG. 13. The transformation of the raw MC configurations be-
fore feeding them into the neural network. From each configuration
of the size N × N q, new configurations of the same size are created
in a way analogous to the hot–encoding scheme, which is usually
used for the labels’ transformation.

training process is 800 000. Such a set is generated for each
microscopic model under study. The batch size is set at 256,
which, according to empirical observations, gives us a good
balance between the speed of the calculations and the stability
of the results obtained.

Although the aforementioned architecture of the Neural
Network (NN), together with the preset hyperparameters, is
used in all of our three models, there are some modifications
to the input data for the neural network. In the case of the FK
model, the configurations of shape 16 × 16 are fed directly
into the CNN layer. The situation is slightly more complicated
when it comes to the qP model. In this case, the number
of input channels is equal to the value of parameter q (see
Sec. III B), which corresponds to the number of ground states
that occur in this model. Then, each channel is created on
the basis positions of spins pointing in the same direction
using a one-hot encoding scheme. Similar preprocessing of
MC configurations has already been applied in Ref. [49]. An
example illustrating this method on the 4 × 4 lattice size is
presented in Fig. 13 and can be trivially extended to the larger
lattice sizes.

The transformation of the Monte Carlo configurations, ob-
tained from the simulations of the BC model, is analogous
to that performed in the case of the qP model. The only
difference is that, in the case of the BC model, independently
of the model parameters, the spin at a given lattice site can al-
ways take three values: −1, 0, 1, so each configuration always
generates three channels. The reason behind such a choice of
data preparation is the stability of the results obtained from
the neural network.

Neural network computations along with data prepro-
cessing steps are performed using the Python programming
language supported by KERAS [70] and SCIKIT-LEARN [71]
packages.

APPENDIX C: THE AUC-ROC METHOD

The AUC-ROC is an evaluation metric that represents the
probability that the random pair of positive and negative sam-
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FIG. 14. Schematics of the confusion matrix for the binary clas-
sification problem including definitions of basic terms used in the
assessment of the model’s performance, i.e., precision, FPR (false
positive rate), accuracy, specificity and TPR (true positive rate). Each
cell of the matrix (rectangle) represents a number of true and false
classification predictions.

ples is correctly classified [72]. It requires the definition of a
confusion matrix, a table with four cells, to which we assign
a number of positively or negatively classified samples on the
basis of their actual labels. Since the classification result can
be false or true and positive or negative, there are four different
possibilities (Fig. 14).

From the confusion matrix, several additional metrics
emerge. Two of them, that is, true positive rate (TPR) and false
positive rate (FPR) are used in a definition of the ROC curve.
The TPR notifies us about a fraction of a positive class that is
correctly classified,

TPR = TP

TP + FN
, (C1)

while FPR,

FPR = FP

FP + TN
(C2)

measures the fraction of the negative class incorrectly classi-
fied by a ML model.

The ROC curve is created by plotting TPR against FPR
for different discrimination thresholds. The typical shapes of
the curve are visualized in Fig. 15. The diagonal line repre-
sents the case where a model classifies samples in a random
manner; therefore, it does not have any discrimination
capacity.

In general, the capability of a model to assign samples
into the right categories improves further when the curve is
near the upper left corner of the plot. To quantitatively de-
scribe this fact, we use the AUC evaluation metrics, which
measures the integral under the ROC curve. The bigger this
integral is, the better the model is at making predictions.

As described in the main text, the evaluation of the LbC
scheme requires the calculation of the performance of a neural
network at different critical temperatures T ′

c . In most cases,
the input to this neural network is imbalanced, i.e., the number
of samples assigned to one category is larger than to the
other one. Such an imbalanced data set is not a problem
when we aim at finding the true critical temperature—the LbC
scheme was originally built on that assumption. However,

FIG. 15. The ROC curve representing the function of TPR (true
positive rate) on FPR (false positive rate) of a model. The diagonal
line corresponds to the case where a model classifies samples in a
random manner. In general, the bigger is the function convexity, the
larger is the model performance.

when it comes to the more subtle problem of determining the
character of a phase transition, our predictions should be more
accurate. In Ref. [73], it has been proven, based on objec-
tive criteria of statistical consistency and discriminancy, that
the AUC-ROC metrics is generally the better metrics in this
case. In addition, we are convinced that, in the context of our
research, it is important to gain information not only about
the accuracy of predictions but also about the distribution of
the neural network’s output. For instance, if we measure the
performance of a model with accuracy, for a sample belong-
ing to a class labeled as 1, it does not make any difference
if the output of a model is 0.55 or 0.99—as long as it is
above threshold value 0.5, it is considered a correct prediction.
On the other hand, if we choose AUC–ROC metrics instead,
we obtain information not only about how good a model is at
classification but also about the degree of separability of the

FIG. 16. Distributions of outputs of the sigmoid activation func-
tion σ (x) from the neural network fed with the spin configurations
generated for FK model U = 0.5 (discontinuous phase transition) in
the case of different critical temperature T ′

c .
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FIG. 17. Distributions of outputs of the sigmoid activation func-
tion σ (x) obtained from the neural network fed with the spin
configurations generated for FK model U = 4.0 (continuous phase
transition) in the case of different critical temperatures T ′

c .

data assigned to different categories. This fact is illustrated
in Figs. 17 and 16, which present the distributions of results
obtained from the output of a neural network in the case of
a model exhibiting the first-order phase transition (Fig. 16)
and second-order phase transition (Fig. 17) at various criti-
cal temperatures T ′

c < Tc, T ′
c ≈ Tc, and T ′

c > Tc, respectively.
It is clearly seen that although the temperature difference
�T = 0.012 between consecutive panels is the same in both
cases, the distribution of the results is quite different. When
it comes to the first-order phase transition, the outputs are
almost perfectly separated for the alleged critical temperature
T ′

c < Tc and T ′
c ≈ Tc. However, this perfect separability is not

(a) (b) (c)

FIG. 18. Definitions of defects (marked in red) for the FK model
(a), the BC model (b), and the five-state Potts model (c). Note that for
the Potts model, the defects shown correspond only to one particular
direction of the global magnetization.

observed for temperature T ′
c > Tc, where the outputs for the

high-temperature phase are more smeared out. The situation
is different when it comes to the second-order phase transition
(17). In such a case, the distribution of the results is basically
the same in all three occurrences (although the separation is
slightly more pronounced for T ′

c ≈ Tc).

APPENDIX D: DEFECTS

Figure 18 illustrates the definitions of defects in otherwise
perfectly ordered states for all the models studied here. By a
defect, we understand any lattice site that does not match its
neighbors in the ordered phase. In the case of the FK and BC
models, there is only one possible kind of defect (empty or
occupied sites for the FK model and spin-up or spin-down
sites for the BC model), while for the qP model, for any
direction of global magnetization s (s = 1, . . . , q) there are
q − 1 possible defects with spin s′ such that s′ �= s.
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