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Recently, there has been substantial progress in methods of identifying local integrals of motion in
interacting integrable models or in systems with many-body localization. We show that one of these
approaches can be utilized for constructing local, conserved, Majorana fermions in systems with an
arbitrary many-body interaction. As a test case, we first investigate a noninteracting Kitaev model and
demonstrate that this approach perfectly reproduces the standard results. Then, we discuss how the many-
body interactions influence the spatial structure and the lifetime of the Majorana modes. Finally, we
determine the regime for which the information stored in the Majorana correlators is also retained for
arbitrarily long times at high temperatures. We show that it is included in the regime with topologically
protected soft Majorana modes, but in some cases is significantly smaller.
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Introduction.—Recently, a lot of hope has been pinned
on Majorana zero modes as building blocks of a quantum
computer [1–5]. One of the systemswhere thesemodes were
proposed and observed is a semiconductor nanowire with a
spin-orbit interaction coupled to an s-wave superconductor
[6–12]. It is known that, in low-dimensional systems,
Coulomb interactions are crucial and can drastically affect
their properties [13–17]. Interactions are also important
for practical reasons: disorder is present in any semi-
conductor nanowire and the Majorana states are not
completely immune against it [18–20]. Moderate inter-
actions may stabilize the Majorana states against such
perturbations [21–24].
Generally, a Majorana fermion is any fermionic operator

Γ that satisfies Γ2 ¼ 1. However, in order to perform
topological quantum computing, one needs stable, non-
Abelian anions [25]. They can be realized as localized
Majorana zero modes (MZMs), whereby their stability
follows from the commutation relation

½Ĥ;Γ� ¼ 0; ð1Þ
where Ĥ is the Hamiltonian. This equation, together with
the conservation of the fermion parity lead to a non-Abelian
braiding for adiabatic exchanging of Majorana quasipar-
ticles [26]. Equation (1) can be fulfilled rigorously only in
the thermodynamic limit, except for a fine-tuned symmetric
point [27] where it also holds true for finite L. In general,
½Ĥ;Γ� ∝ e−L=ξ, where L is the system size and ξ is
correlation length [28]. The nonzero value of the commu-
tator means that, even in the absence of any external
decoherence processes, the MZMwill have a finite lifetime.
The question is how to find the topological order and

Majorana modes in interacting systems. Several methods
have been used to study MZMs in interacting nanowires

[29–33], see Ref. [22] for a review. A commonly tested
necessary condition [which follows from Eq. (1)] concerns
degeneracy of the ground states obtained for systems with
odd and even numbers of fermions. A sufficient condition
for the presence of topological order is more involved. It
can be formulated based on the local unitary equivalence
(LUE) between the ground states of the interacting system
and of the noninteracting Kitaev chain in the topological
phase [34]. In order to prove LUE, it is sufficient to show
that one of the ground states can be continuously deformed
to the other, whereby the spectral gap above the ground
state must stay open along the entire path of deformation
[35,36]. But this is not equivalent to Eq. (1) and guarantees
only the so-called soft mode, which is fully protected by
topology only at temperatures well below the spectral
gap. In other words, a soft MZM commutes with the
Hamiltonian which is projected into a low-energy subspace
[37]. At higher temperatures, the information encoded in
this mode can be lost after some time.
In this Letter, we propose a method that allows one to

find Majorana operator Γ that almost satisfies Eq. (1) within
the entire Hilbert space. Our method finds the so–called
strong MZM that is stable at arbitrarily high temperatures
[38–40]. Perturbative construction of almost strong MZMs
has recently been reported in Ref. [40] for the Ising–like
model with nearest- and (integrability-breaking) next-
nearest-neighbor interactions. In contradistinction, our
approach is general and can be applied for arbitrary
Hamiltonians, in principle, also, for spinful fermions. To
this end, we derive the optimal form of a local operator Γ
that guarantees the longest lifetime of the MZM. We
determine the regime of existence of a strong MZM and
show that it is smaller than the regime with soft modes, the
latter being established from LUE.

PHYSICAL REVIEW LETTERS 120, 040504 (2018)

0031-9007=18=120(4)=040504(6) 040504-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.040504&domain=pdf&date_stamp=2018-01-26
https://doi.org/10.1103/PhysRevLett.120.040504
https://doi.org/10.1103/PhysRevLett.120.040504
https://doi.org/10.1103/PhysRevLett.120.040504
https://doi.org/10.1103/PhysRevLett.120.040504


The general method.—We consider the Hamiltonian
Ĥ ¼ P

mEmjmihmj and assume that the relevant degrees
of freedom can be expressed in terms of the standard
fermionic operators aj and a†j or, equivalently, in terms of

the Majorana fermions γ2j ¼ aj þ a†j , γ2jþ1 ¼ iða†j − ajÞ.
Here, j includes all quantum numbers, e.g., the spin
projection. We search for particular combinations of the
Majorana operators Γ ¼ P

iαiγi with real coefficients αi
such that Γ is conserved [41]. We assume normalizationP

iα
2
i ¼ 1 when Γ2 ¼ 1. The conservation of Γ can

conveniently be studied by averaging this quantity over
an infinite time window

Γ̄ ¼ lim
τ0→∞

1

τ0

Z
τ0

0

dteiHtΓe−iHt ð2Þ

¼ lim
τ→∞

X

m;n

θ

�
1

τ
− jEm − Enj

�

hnjΓjmijnihmj: ð3Þ

If this mode is strictly conserved, then Γ̄ ¼ Γ. This,
however, would require Eq. (1) to be satisfied, what
may not be the case in finite systems. Therefore, we will
usually search for an optimal choice of αi when Γ̄ is as close
to Γ as possible. In order to quantify the proximity of two
operators, we use the usual (Hilbert-Schmidt) inner product
hÂ B̂i ¼ TrðÂ B̂Þ=Trð1̂Þ. The optimal choice of coefficients
αi corresponds to a minimum of hðΓ − Γ̄Þ2i ¼ 1 − hΓ̄2i.
The latter equality originates from the identity hΓΓ̄i ¼
hΓ̄ Γ̄i (i.e., the time averaging is an orthogonal projection),
as shown in the Supplemental Material [42]. Consequently,
the least decaying mode can be found from the optimization
problem

λ ¼ max
fαig

hΓ̄2i ¼ max
fαig

hΓ̄Γi: ð4Þ

The physical meaning of λ comes from the observation
that the scalar product h:::i formally represents thermal
averaging carried out for infinite temperatures. Then,
following Eq. (4), λ is the asymptotic value of the longest
living autocorrelation function hΓðtÞΓi. If λ ¼ 1, then Γ is a
strict integral of motion. i.e., a strong MZM [37,38,43,44].
For 0 < λ < 1, the information stored in the correlator
hΓðtÞΓi is partially retained for arbitrarily long times
(despite Γ not being strictly conserved), while this infor-
mation is completely lost when λ ¼ 0. The optimization
problem can be further simplified

λ ¼ max
fαig

X

ij

αihγ̄iγ̄jiαj: ð5Þ

It becomes a standard eigenproblem for the (positive
semidefinite) matrix hγ̄iγ̄ji. Namely, λ is the largest
eigenvalue of hγ̄iγ̄ji, and αj are components of the

corresponding eigenvector. Essentially, all nonvanishing
eigenvalues (whether degenerate or not) correspond to
independent MZMs, whereby their independence follows
from orthogonality of different eigenvectors and the iden-
tity hγiγji ¼ δij.
The general idea behind this method is similar to another

approach which has previously been used for identification
of new integrals of motion in the Heisenberg model [45].
The latter approach targets operators which are conserved
and local. Here, we single out Majorana operators which
are conserved and, at the same time, are local. The
conservation follows from the time averaging, i.e., from
the identity ½Ĥ; Γ̄� ¼ 0, whereas locality originates from the
fact that Γ is a linear combination of γi, each of them being
supported on a single site only. Since we maximize the
projection hΓ̄Γi, the resulting operators retain the properties
of both Γ and Γ̄; i.e., they are local, conservedMZMs. More
formal discussion concerning MZMs (including their local-
ity [46]) can be found in the Supplemental Material [42].
When studying systems with fixed boundary conditions,

it is utterly important, that the limit for the size of the
system L → ∞ precedes the limit for time τ → ∞, [47,48].
Since numerical calculations can be carried out for finite
systems only, τ in Eq. (3) should be kept large but finite
until the finite–size scaling is accomplished. All the
discussed properties of the correlation functions also hold
true for finite τ [49,50], even though it is not the case for
finite τ0 in Eq. (2).
Example.—As an example, we study a one–dimensional

system of interacting, spinless fermions with hard-wall
boundary conditions. The system is described by the Kitaev
Hamiltonian [27] extended by the many-body interactions

Ĥ ¼ −t0
XL−1

i¼1

ða†iþ1ai þ H:c:Þ þ Δ
XL−1

i¼1

ða†iþ1a
†
i þ H:c:Þ

− μ
XL

i¼1

~ni þ V
XL−1

i¼1

~ni ~niþ1 þW
XL−1

i¼1

~ni ~niþ2: ð6Þ

Here, t0 refers to hopping amplitude, μ is a chemical
potential, Δ is the superconducting gap and ~ni ¼ a†i ai − 1

2
.

V and W are potentials of the first and second nearest-
neighbor interactions. For simplicity, we use dimensionless
units by putting ℏ ¼ 1 and t0 ¼ 1.
Test for noninteracting systems.—Numerical implemen-

tation of our approach consists of three consecutive steps:
(i) exact diagonalization of the Hamiltonian (6); (ii) numeri-
cal construction of time–averaged Majorana operators γ̄i as
defined by Eq. (3) but for finite τ; (iii) construction and
diagonalization of the matrix Kij ¼ hγ̄iγ̄ji. Because of the
orthogonality relation hγ̄2iγ̄2jþ1i ¼ 0, one may separately
study two cases Γþ ¼ P

iα
þ
i γ2i and Γ− ¼ P

iα
−
i γ2iþ1,

whereby, now, the index i enumerates the lattice sites. In
the rest of this Letter, we discuss the two most stable modes
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(one in each sector Γþ and Γ−). All other eigenvalues of the
matrix K are much smaller and vanish in the thermody-
namic limit (not shown). It remains in agreement with a
common knowledge that the homogeneous chain described
by the Hamiltonian (6) may host at most two MZMs
exponentially localized at the boundaries [27,28,36].
The complexity of our approach is independent of

whether or not the many-body interactions are present;
hence, the method can be tested by investigating a non-
interacting system with V ¼ W ¼ 0. Figure 1(a) shows τ
dependence of λ [see Eq. (4)] for the most stable MZM Γþ.
Results for Γ− are exactly the same. One may introduce the
lifetime of the MZMs, τM, corresponding to the vertical
sections of curves shown in the latter plot. Figure 1(c)
shows that, for the finite system, τM is finite as well, despite
the absence of the many-body scattering. The only excep-
tion concerns jΔj ¼ 1 when τM → ∞ for arbitrary L.
Otherwise, τM increases exponentially with L, as follows
from the equal spacing of the vertical sections in Fig. 1(a).
The latter result clearly illustrates the importance of the
correct order of limits: limτ→∞limL→∞λ ¼ 1; i.e., the
MZMs are strictly conserved in the thermodynamic limit,
while limL→∞limτ→∞λ ¼ 0. All the obtained results remain
in agreement with the well established properties of the
MZMs in a noninteracting case, see, e.g., [28].
We have also calculated the local density of states at zero

energy for the noninteracting Hamiltonian

ρiðE ¼ 0Þ ¼ −
1

π
ImGiiðE ¼ 0Þ;

GðEÞ ¼ ðE − Ĥ þ iηÞ−1; ð7Þ
where Ĥ is given by Eq. (6) but with V ¼ W ¼ 0. In
Figs. 2(a) and 2(b), rescaled ρiðE ¼ 0Þ is compared with
the spatial density of the Majorana fermions contributing to
both Majorana modes, jαþi j2 þ jα−i j2. Perfect agreement

between both methods illustrates accuracy of the approach
proposed in this Letter.
Systems with many-body interactions.—All results in the

main text will be shown for W ¼ V=2, whereas the com-
monly studied case W ¼ 0 (which contains some peculiar
features) is discussed in the Supplemental Material [42].
Results in Figs. 1(b) and 1(d) show themost stableMajorana
autocorrelation function [Eq. (4)] in the presence of weak
to moderate interactions. Similar to the noninteracting
case [Fig. 1(a)], the position of the steep sections of λðτÞ
increases exponentially with the system size indicating that
limτ→∞limL→∞λ≃ 1 but, in contrast to noninteracting
systems, λ < 1. In the Supplemental Material [42], we show
that the latter inequality seems to be generic for systemswith
many-body interactions. It implies that the strictly local
operator Γ is not a strict integral of motion. Our approach
singles out Γ which contains the largest possible conserved
part represented by limτ→∞Γ̄.
For finite systems, the many-body interactions may

extend the time scale in which the correlator hΓðtÞΓi is
large. Interestingly, this extension can exceed 1 order of
magnitude, as shown in Fig. 1(d). Figures 2(c) and 2(d)
explain the origin of this extension. They show how the
many-body interactions modify the spatial structure of the
MZMs. There are two modes which vanish exponentially
outside of the edges of the system. Note that this property is
not built into our algorithm but appears as a result which
doesn’t need to hold true for other geometry of the system.
Despite the exponential decay, these two modes still do
overlap, and this overlap is responsible for a finite-lifetime
of the MZMs in a noninteracting system with L < ∞.
Then, the many-body interactions push these modes further
towards the edges of the system [see Figs. 2(c) and 2(d)],
reducing the overlap between them and, in this way,
increasing their lifetime. This mechanism holds true as

(a)

(c)

(b)

(d)

FIG. 1. Results for systems without (a),(c) and with (b),(d)
many-body interactions and μ ¼ 0. (a), (b), and (d) The Majorana
autocorrelation function λ [see Eq. (4)] for: (a) V ¼ 0, Δ ¼ 0.5;
(b) V ¼ 0.2, Δ ¼ 0.5; (d) L ¼ 12, Δ ¼ 0.3. (c) Lifetime of
MZMs for a finite noninteracting system of L ¼ 10 sites.

(a)

(c)

(b)

(d)

FIG. 2. Spatial structure of MZMs, Γþ ¼ P
iα

þ
i γ2i and

Γ− ¼ P
iα

−
i γ2iþ1. (a) and (b) Rescaled local density of states

at energy E ¼ 0 for noninteracting system [V ¼ 0, Eq. (7)] (solid
line) compared with solution of Eq. (5) (points). (c) and
(d) Results for V ≠ 0 from Eq. (5).
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long as the interactions are not too strong, when the MZMs
eventually disappear.
Next, we compare our results for strong MZMs with the

presence of the topological order. We check the degeneracy
of the ground state (necessary condition) as well as LUE to
the topological regime in the noninteracting Kitaev model
(sufficient condition). To this end, we study chains of
L ¼ 8; 10;…; 20 and find the two lowest energies in the
subspaces with odd and even particle numbers, denoted,
respectively, as E0;oðLÞ, E1;oðLÞ and E0;eðLÞ, E1;eðLÞ. We
introduce the measure of the ground–state degeneracy
δEðLÞ ¼ E0;oðLÞ − E0;eðLÞ and two spectral gaps,
ΔEoðeÞðLÞ ¼ E1;oðeÞðLÞ − E0;oðeÞðLÞ. Typically, the gaps
between the low–energy levels decay algebraically with
L; hence, we carry this out linearly in 1=L extrapolations of
ΔEoðeÞðLÞ. However, δEðLÞ should decay exponentially in
the topological regime; thus, we use the fitting function
δEðLÞ¼Aexpð−BLÞþδEð∞Þ. These extrapolations break
down when V and μ are large [42], what shows up as large
errors for the extrapolated quantities, σδE and σΔE. We
identify the degenerate ground states as a regime where
both jδEð∞Þj and σδE are small, defining δE≡ jδEð∞Þj þ
σδE ≪ 1 as the lower bound on the degenerate region. The
LUE implies that the gap minfΔEoð∞Þ;ΔEeð∞Þg doesn’t
vanish along a path that reaches the topological regime
for V ¼ 0, while σΔE remains small. Then, we define
the lower bound on the corresponding region by ΔE≡
minfΔEoð∞Þ;ΔEeð∞Þg − σΔE > 0. Results for δE and
ΔE are shown in Figs. 3(a), 4(a) and 3(b), 4(b), respec-
tively. The actual topological region may be larger than it
follows from lower bounds shown in Figs. 3(b) and 4(b).
Results in Figs. 3(c) and 3(d) show that the strong

MZMs, indeed, exist for very long times (τ > 200) not only
in the ground state but, essentially, in the entire energy
spectrum. We also confirm that a moderate many-body
interaction extends the range of μ where soft and strong
MZMs are present [22].

In Fig. 4, we show similar results but for μ ¼ 0 and
various magnitudes of the superconducting gap Δ. In this
case, an exact solution is known but only for Δ ¼ 1 and
W ¼ 0 [36,51]. For large τ and Δ ≫ 1, the strong MZMs
seem to be absent even for a very weak many-body
interaction. However, it is a finite-size effect that, again,
shows how important is the correct order of limits for time
and the system size. Therefore, in Fig. 5, we set τ ¼ 100
and show the Majorana autocorrelation function for
various values of L together with results extrapolated to
L → ∞. The details of extrapolation and results for
limτ→∞limL→∞λðτÞ are shown in the Supplemental material
[42]. The regime with λ > 0 covers roughly the entire
topological regime determined via LUE to the single-
particle Kitaev model [compare Figs. 4(b) and 5(d)].
However, λ gradually decreases with increasing inter-
actions, and a strong MZM with large λ exists within a
much smaller regime, as shown, e.g., by the contour in
Fig. 5(d).

(a) (b)

(c) (d)

FIG. 3. Results for Δ ¼ 1. (a) Degeneracy of the ground states.
(b) The spectral gap. (c) and (d) show the Majorana autocorre-
lation function λ for various times τ and L ¼ 12. Note different
color schemes in (a) and (b).

(a) (b)

(c) (d)

FIG. 4. The same as in Fig. 3, but as a function of V and Δ for
μ ¼ 0.

(a) (b)

(c) (d)

FIG. 5. The autocorrelation function λ as a function of V and Δ
for τ ¼ 100 and system sizes L = 8 (a), 10 (b), 12 (c), and 14 (d).
Contour in (d) marks λ ¼ 0.8.
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Conclusions.—We have proposed an approach for find-
ing local (strong or almost strong) MZMs which can be
implemented for an arbitrary many-body interaction. We
have found that, even at elevated temperatures, the lifetime
of these modes is long enough so that they may be used
effectively to store information. The regime where the
strong MZMs exist (as quantified by large λ in our
approach) is included, but is smaller than the regime which
is unitarily equivalent to the topological regime in the
single-particle Kitaev model. It means that not all topo-
logical states are equally protected to be useful in, e.q.,
quantum computing. At finite temperatures, the systems
with weak many-body interactions are preferable; however,
these interactions may still be significant, when compared
to other energy scales in the system. Our results also
suggest that, in systems with many-body interactions, the
strictly local Majorana operators are not strict integrals of
motion; however, their autocorrelation function remains
large for arbitrarily long times.
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